237 research outputs found
HER2/neu overexpression in the development of muscle-invasive transitional cell carcinoma of the bladder
The mortality from transitional cell carcinoma (TCC) of the urinary bladder increases significantly with the progression of superficial or locally invasive disease (pTa/pT1) to detrusor muscle-invasive disease (pT2+). The most common prognostic markers in clinical use are tumour stage and grade, which are subject to considerable intra- and interobserver variation. Polysomy 17 and HER2/neu gene amplification and protein overexpression have been associated with more advanced disease. Standardised techniques of fluorescence in situ hybridisation and immunohistochemistry, which are currently applied to other cancers with a view to offering anti-HER2/neu therapies, were applied to tumour pairs comprising pre- and postinvasive disease from 25 patients undergoing treatment for bladder cancer. In the preinvasive tumours, increased HER2/neu copy number was observed in 76% of cases and increased chromosome 17 copy number in 88% of cases, and in the postinvasive group these values were 92 and 96%, respectively (not significantly different P=0.09 and 0.07, respectively). HER2 gene amplification rates were 8% in both groups. Protein overexpression rates were 76 and 52%, respectively, in the pre- and postinvasive groups (P=0.06). These results suggest that HER2/neu abnormalities occur prior to and persist with the onset of muscle-invasive disease. Gene amplification is uncommon and other molecular mechanisms must account for the high rates of protein overexpression. Anti-HER2/neu therapy might be of use in the treatment of TCC
Genetic aberrations of c-myc and CCND1 in the development of invasive bladder cancer
Detrusor muscle invasive transitional cell carcinoma is associated with poor prognosis and is responsible for the majority of bladder cancer related deaths. Amplifications of c-myc and CCND1 are associated with detrusor-muscle-invasive transitional cell carcinoma, however, their precise role in driving disease progression is unclear. Fluorescence in situ hybridisation on archival tissue from 16 patients with primary diagnosis of ⩾pT2 transitional cell carcinoma and 15 cases with primary pTa/pT1 disease subsequently progressing to detrusor-muscle-invasion was performed, in the latter group both pre and post muscle invasive events were studied. No patients presenting with ⩾pT2 had amplification of c-myc, two out of 16 (12.5%) had CCND1 amplification. Of patients who developed ⩾pT2, two out of 15 (13.3%) had amplification of c-myc, both in ⩾pT2, five out of 15 (33.3%) had CCND1 amplification, two in pTa/pT1 tumours, three in ⩾pT2 transitional cell carcinomas. In total, two out of 31 (6.5%) of patients' ⩾pT2 TCCs were amplified for c-myc and six out of 31 (19%) were amplified for CCND1. Eighty-seven per cent (40 out of 46) of tumours were polysomic for chromosome 8 and 80% (37 out of 46) were polysomic for chromosome 11 and this reflected the high copy numbers of c-myc and CCND1 observed. In almost all cases an increase in c-myc/CCND1 copy number occurred prior to invasion and persisted in advanced disease. Amplification of CCND1 or alterations in c-myc/CCND1 early in bladder cancer may have clinical relevance in promoting and predicting progression to detrusor-muscle-invasive transitional cell carcinoma
On quiver Grassmannians and orbit closures for representation-finite algebras
We show that Auslander algebras have a unique tilting and cotilting module which is generated and cogenerated by a projective-injective; its endomorphism ring is called the projective quotient algebra. For any representation- nite algebra, we use the projective quotient algebra to construct desingularizations of quiver Grassmannians, orbit closures in representation varieties, and their desingularizations. This generalizes results of Cerulli Irelli, Feigin and Reineke
POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors
Human germ cell tumors (GCTs) may have variable histology and clinical
behavior, depending on factors such as sex of the patient, age at clinical
diagnosis, and anatomical site of the tumor. Some types of GCT, i.e., the
seminomas/germinomas/dysgerminomas and embryonal carcinomas (the stem cell
component of nonseminomas), have pluripotent potential, which is
demonstrated by their capacity to differentiate into somatic and/or
extraembryonic elements. Although embryonal carcinoma cells are
intrinsically pluripotent, seminoma/germinoma/dysgerminoma cells, as well
as their precursor carcinoma in situ/gonadoblastoma cells, have the
phenotype of early germ cells that can be activated to pluripotency. The
other types of GCT (teratomas and yolk sac tumors of infants and newborn,
dermoid cyst of the ovary, and spermatocytic seminoma of elderly) are
composed of (fully) differentiated tissues and lack the appearance of
undifferentiated and pluripotent stem cells. OCT3/4, a transcription
factor also known as OTF3 and POU5F1, is involved in regulation of
pluripotency during normal development and is detectable in embryonic stem
and germ cells. We analyzed the presence of POU5F1 in GCT and other tumor
types using immunohistochemistry. The protein was consistently detected in
carcinoma in situ/gonadoblasto
Role of the VEGF ligand to receptor ratio in the progression of mismatch repair-proficient colorectal cancer
The VEGF family of ligands and receptors are intimately involved in tumor angiogenesis, lymphangiogenesis and metastasis. The evaluation of VEGF ligand/receptor ratios may provide a more profound understanding of the involvement of these proteins in colorectal tumour progression. The aim of this study was to elucidate the role of the VEGF ligand/receptor ratios on tumour progression and metastasis in patients with mismatch repair-proficient colorectal cancer
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Ultra-stable optical clock with two cold-atom ensembles
Atomic clocks based on optical transitions are the most stable, and therefore
precise, timekeepers available. These clocks operate by alternating intervals
of atomic interrogation with dead time required for quantum state preparation
and readout. This non-continuous interrogation of the atom system results in
the Dick effect, an aliasing of frequency noise of the laser interrogating the
atomic transition. Despite recent advances in optical clock stability achieved
by improving laser coherence, the Dick effect has continually limited optical
clock performance. Here we implement a robust solution to overcome this
limitation: a zero-dead-time optical clock based on the interleaved
interrogation of two cold-atom ensembles. This clock exhibits vanishingly small
Dick noise, thereby achieving an unprecedented fractional frequency instability
of for an averaging time in seconds.
We also consider alternate dual-atom-ensemble schemes to extend laser coherence
and reduce the standard quantum limit of clock stability, achieving a
spectroscopy line quality factor
- …