756 research outputs found
Quantum phase transitions of light
Recently, condensed matter and atomic experiments have reached a length-scale
and temperature regime where new quantum collective phenomena emerge. Finding
such physics in systems of photons, however, is problematic, as photons
typically do not interact with each other and can be created or destroyed at
will. Here, we introduce a physical system of photons that exhibits strongly
correlated dynamics on a meso-scale. By adding photons to a two-dimensional
array of coupled optical cavities each containing a single two-level atom in
the photon-blockade regime, we form dressed states, or polaritons, that are
both long-lived and strongly interacting. Our zero temperature results predict
that this photonic system will undergo a characteristic Mott insulator
(excitations localised on each site) to superfluid (excitations delocalised
across the lattice) quantum phase transition. Each cavity's impressive photon
out-coupling potential may lead to actual devices based on these quantum
many-body effects, as well as observable, tunable quantum simulators. We
explicitly show that such phenomena may be observable in micro-machined diamond
containing nitrogen-vacancy colour centres and superconducting microwave
strip-line resonators.Comment: 11 pages, 5 figures (2 in colour
AdS vacua and RG flows in three dimensional gauged supergravities
We study supersymmetric vacua in N=4 and N=8, three dimensional
gauged supergravities, with scalar manifolds and , non-semisimple Chern-Simons
gaugings and ,
respectively. These are in turn equivalent to SO(4) and
Yang-Mills theories coupled to supergravity. For the N=4 case, we study
renormalization group flows between UV and IR vacua with the same
amount of supersymmetry: in one case, with (3,1) supersymmetry, we can find an
analytic solution whereas in another, with (2,0) supersymmetry, we give a
numerical solution. In both cases, the flows turn out to be v.e.v. flows, i.e.
they are driven by the expectation value of a relevant operator in the dual
. These provide examples of v.e.v. flows between two vacua
within a gauged supergravity framework.Comment: 35 pages in JHEP form, 3 figures, typos corrected, references adde
Experiences, Opportunities and Challenges of Implementing Task Shifting in Underserved Remote Settings: The Case of Kongwa District, Central Tanzania.
Tanzania is experiencing acute shortages of Health Workers (HWs), a situation which has forced health managers, especially in the underserved districts, to hastily cope with health workers' shortages by adopting task shifting. This has however been due to limited options for dealing with the crisis of health personnel. There are on-going discussions in the country on whether to scale up task shifting as one of the strategies for addressing health personnel crisis. However, these discussions are not backed up by rigorous scientific evidence. The aim of this paper is two-fold. Firstly, to describe the current situation of implementing task shifting in the context of acute shortages of health workers and, secondly, to provide a descriptive account of the potential opportunities or benefits and the likely challenges which might ensue as a result of implementing task shifting. We employed in-depth interviews with informants at the district level and supplemented the information with additional interviews with informants at the national level. Interviews focussed on the informants' practical experiences of implementing task shifting in their respective health facilities (district level) and their opinions regarding opportunities and challenges which might be associated with implementation of task shifting practices. At the national level, the main focus was on policy issues related to management of health personnel in the context of implementation of task shifting, in addition to seeking their opinions and perceptions regarding opportunities and challenges of implementing task shifting if formally adopted. Task shifting has been in practice for many years in Tanzania and has been perceived as an inevitable coping mechanism due to limited options for addressing health personnel shortages in the country. Majority of informants had the concern that quality of services is likely to be affected if appropriate policy infrastructures are not in place before formalising tasks shifting. There was also a perception that implementation of task shifting has ensured access to services especially in underserved remote areas. Professional discontent and challenges related to the management of health personnel policies were also perceived as important issues to consider when implementing task shifting practices. Additional resources for additional training and supervisory tasks were also considered important in the implementation of task shifting in order to make it deliver much the same way as it is for conventional modalities of delivering care. Task shifting implementation occurs as an ad hoc coping mechanism to the existing shortages of health workers in many undeserved areas of the country, not just in the study site whose findings are reported in this paper. It is recommended that the most important thing to do now is not to determine whether task shifting is possible or effective but to define the limits of task shifting so as to reach a consensus on where it can have the strongest and most sustainable impact in the delivery of quality health services. Any action towards this end needs to be evidence-based
The momentum analyticity of two-point correlators from perturbation theory and AdS/CFT
The momentum plane analyticity of two point function of a relativistic
thermal field theory at zero chemical potential is explored. A general
principle regarding the location of the singularities is extracted. In the case
of the N=4 supersymmetric Yang-Mills theory at large , a qualitative
change in the nature of the singularity (branch points versus simple poles)
from the weak coupling regime to the strong coupling regime is observed with
the aid of the AdS/CFT correspondence.Comment: 18 pages, 3 figures, typos fixed, 1 figure update
Filariasis in Travelers Presenting to the GeoSentinel Surveillance Network
As international travel increases, there is rising exposure to many pathogens not traditionally encountered in the resource-rich countries of the world. The GeoSentinel Surveillance Network, a global network of medicine/travel clinics, was established in 1995 to detect morbidity trends among travelers. Filarial infections (parasitic worm infections that cause, among others, onchocerciasis [river blindness], lymphatic filariasis [e.g. elephantiasis, lymphedema, hydrocele] and loiasis [African eyeworm]) comprised 0.62% (n = 271) of the 43,722 medical conditions reported to the GeoSentinel Network between 1995 and 2004. Immigrants from filarial-endemic regions comprised the group most likely to have acquired a filarial infection; sub-Saharan Africa was the region of the world where the majority of filarial infections were acquired. Long-term travel (greater than 1 month) was more likely to be associated with acquisition of one of the filarial infections than shorter-term travel
The Cosmological Constant
This is a review of the physics and cosmology of the cosmological constant.
Focusing on recent developments, I present a pedagogical overview of cosmology
in the presence of a cosmological constant, observational constraints on its
magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity
(http://www.livingreviews.org/), December 199
Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk
Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency
Portuguese Foundation for Science and Technology
CRESC ALGARVE 2020
European Union (EU)
303745
Maratona da Saude Award
DL 57/2016/CP1361/CT0042
SFRH/BPD/99502/2014
CBMR-UID/BIM/04773/2013
POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio
The Hubble Constant
I review the current state of determinations of the Hubble constant, which
gives the length scale of the Universe by relating the expansion velocity of
objects to their distance. There are two broad categories of measurements. The
first uses individual astrophysical objects which have some property that
allows their intrinsic luminosity or size to be determined, or allows the
determination of their distance by geometric means. The second category
comprises the use of all-sky cosmic microwave background, or correlations
between large samples of galaxies, to determine information about the geometry
of the Universe and hence the Hubble constant, typically in a combination with
other cosmological parameters. Many, but not all, object-based measurements
give values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc.
This is in mild discrepancy with CMB-based measurements, in particular those
from the Planck satellite, which give values of 67-68km/s/Mpc and typical
errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that
accuracy rather than precision is the remaining problem in a good determination
of the Hubble constant. Whether a discrepancy exists, and whether new physics
is needed to resolve it, depends on details of the systematics of the
object-based methods, and also on the assumptions about other cosmological
parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by
Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
Bounds on 4D Conformal and Superconformal Field Theories
We derive general bounds on operator dimensions, central charges, and OPE
coefficients in 4D conformal and N=1 superconformal field theories. In any CFT
containing a scalar primary phi of dimension d we show that crossing symmetry
of implies a completely general lower bound on the central
charge c >= f_c(d). Similarly, in CFTs containing a complex scalar charged
under global symmetries, we bound a combination of symmetry current two-point
function coefficients tau^{IJ} and flavor charges. We extend these bounds to
N=1 superconformal theories by deriving the superconformal block expansions for
four-point functions of a chiral superfield Phi and its conjugate. In this case
we derive bounds on the OPE coefficients of scalar operators appearing in the
Phi x Phi* OPE, and show that there is an upper bound on the dimension of Phi*
Phi when dim(Phi) is close to 1. We also present even more stringent bounds on
c and tau^{IJ}. In supersymmetric gauge theories believed to flow to
superconformal fixed points one can use anomaly matching to explicitly check
whether these bounds are satisfied.Comment: 47 pages, 9 figures; V2: small corrections and clarification
- …