438 research outputs found
Skyrmion Multi-Walls
Skyrmion walls are topologically-nontrivial solutions of the Skyrme system
which are periodic in two spatial directions. We report numerical
investigations which show that solutions representing parallel multi-walls
exist. The most stable configuration is that of the square -wall, which in
the limit becomes the cubically-symmetric Skyrme crystal. There is
also a solution resembling parallel hexagonal walls, but this is less stable.Comment: 7 pages, 1 figur
Non-minimal coupling of the Higgs boson to curvature in an inflationary universe
In the absence of new physics around 10^10 GeV, the electroweak vacuum is at best metastable. This represents a major challenge for high scale in ationary models as, during the early rapid expansion of the universe, it seems difficult to understand how the Higgs vacuum would not decay to the true lower vacuum of the theory with catas- trophic consequences if inflation took place at a scale above 10^10 GeV. In this paper we show that the non-minimal coupling of the Higgs boson to curvature could solve this problem by generating a direct coupling of the Higgs boson to the inflationary potential thereby stabilizing the electroweak vacuum. For specific values of the Higgs field initial condition and of its non-minimal coupling, inflation can drive the Higgs field to the electroweak vacuum quickly during inflation
Valproic acid restricts mast cell activation by Listeria monocytogenes.
Mast cells (MC) play a central role in the early containment of bacterial infections, such as that caused by Listeria monocytogenes (L.m). The mechanisms of MC activation induced by L.m infection are well known, so it is possible to evaluate whether they are susceptible to targeting and modulation by different drugs. Recent evidence indicates that valproic acid (VPA) inhibits the immune response which favors L.m pathogenesis in vivo. Herein, we examined the immunomodulatory effect of VPA on L.m-mediated MC activation. To this end, bone marrow-derived mast cells (BMMC) were pre-incubated with VPA and then stimulated with L.m. We found that VPA reduced MC degranulation and cytokine release induced by L.m. MC activation during L.m infection relies on Toll-Like Receptor 2 (TLR2) engagement, however VPA treatment did not affect MC TLR2 cell surface expression. Moreover, VPA was able to decrease MC activation by the classic TLR2 ligands, peptidoglycan and lipopeptide Pam3CSK4. VPA also reduced cytokine production in response to Listeriolysin O (LLO), which activates MC by a TLR2-independent mechanism. In addition, VPA decreased the activation of critical events on MC signaling cascades, such as the increase on intracellular Ca2+ and phosphorylation of p38, ERK1/2 and -p65 subunit of NF-κB. Altogether, our data demonstrate that VPA affects key cell signaling events that regulate MC activation following L.m infection. These results indicate that VPA can modulate the functional activity of different immune cells that participate in the control of L.m infection
Higgs Low-Energy Theorem (and its corrections) in Composite Models
The Higgs low-energy theorem gives a simple and elegant way to estimate the
couplings of the Higgs boson to massless gluons and photons induced by loops of
heavy particles. We extend this theorem to take into account possible nonlinear
Higgs interactions resulting from a strong dynamics at the origin of the
breaking of the electroweak symmetry. We show that, while it approximates with
an accuracy of order a few percents single Higgs production, it receives
corrections of order 50% for double Higgs production. A full one-loop
computation of the gg->hh cross section is explicitly performed in MCHM5, the
minimal composite Higgs model based on the SO(5)/SO(4) coset with the Standard
Model fermions embedded into the fundamental representation of SO(5). In
particular we take into account the contributions of all fermionic resonances,
which give sizeable (negative) corrections to the result obtained considering
only the Higgs nonlinearities. Constraints from electroweak precision and
flavor data on the top partners are analyzed in detail, as well as direct
searches at the LHC for these new fermions called to play a crucial role in the
electroweak symmetry breaking dynamics.Comment: 30 pages + appendices and references, 12 figures. v2: discussion of
flavor constraints improved; references added; electroweak fit updated,
results unchanged. Matches published versio
The Dark Side of the Electroweak Phase Transition
Recent data from cosmic ray experiments may be explained by a new GeV scale
of physics. In addition the fine-tuning of supersymmetric models may be
alleviated by new O(GeV) states into which the Higgs boson could decay. The
presence of these new, light states can affect early universe cosmology. We
explore the consequences of a light (~ GeV) scalar on the electroweak phase
transition. We find that trilinear interactions between the light state and the
Higgs can allow a first order electroweak phase transition and a Higgs mass
consistent with experimental bounds, which may allow electroweak baryogenesis
to explain the cosmological baryon asymmetry. We show, within the context of a
specific supersymmetric model, how the physics responsible for the first order
phase transition may also be responsible for the recent cosmic ray excesses of
PAMELA, FERMI etc. We consider the production of gravity waves from this
transition and the possible detectability at LISA and BBO
High Smac/DIABLO expression is associated with early local recurrence of cervical cancer
<p>Abstract</p> <p>Background</p> <p>In a recent pilot report, we showed that Smac/DIABLO mRNA is expressed <it>de novo </it>in a subset of cervical cancer patients. We have now expanded this study and analyzed Smac/DIABLO expression in the primary lesions in 109 cervical cancer patients.</p> <p>Methods</p> <p>We used immunohistochemistry of formalin-fixed, paraffin-embedded tissue sections to analyze Smac/DIABLO expression in the 109 primary lesions. Seventy-eight samples corresponded to epidermoid cervical cancer and 31 to cervical adenocarcinoma. The median follow up was 46.86 months (range 10–186).</p> <p>Results</p> <p>Smac/DIABLO was expressed in more adenocarcinoma samples than squamous tumours (71% vs 50%; p = 0.037). Among the pathological variables, a positive correlation was found between Smac/DIABLO immunoreactivity and microvascular density, a marker for angiogenesis (p = 0.04). Most importantly, Smac/DIABLO immunoreactivity was associated with a higher rate of local recurrence in squamous cell carcinoma (p = 0.002, log rank test). No association was found between Smac/DIABLO and survival rates.</p> <p>Conclusion</p> <p>Smac/DIABLO expression is a potential marker for local recurrence in cervical squamous cell carcinoma patients.</p
The Custodial Randall-Sundrum Model: From Precision Tests to Higgs Physics
We reexamine the Randall-Sundrum (RS) model with enlarged gauge symmetry
SU(2)_L x SU(2)_R x U(1)_X x P_LR in the presence of a brane-localized Higgs
sector. In contrast to the existing literature, we perform the Kaluza-Klein
(KK) decomposition within the mass basis, which avoids the truncation of the KK
towers. Expanding the low-energy spectrum as well as the gauge couplings in
powers of the Higgs vacuum expectation value, we obtain analytic formulas which
allow for a deep understanding of the model-specific protection mechanisms of
the T parameter and the left-handed Z-boson couplings. In particular, in the
latter case we explain which contributions escape protection and identify them
with the irreducible sources of P_LR symmetry breaking. We furthermore show
explicitly that no protection mechanism is present in the charged-current
sector confirming existing model-independent findings. The main focus of the
phenomenological part of our work is a detailed discussion of Higgs-boson
couplings and their impact on physics at the CERN Large Hadron Collider. For
the first time, a complete one-loop calculation of all relevant Higgs-boson
production and decay channels is presented, incorporating the effects stemming
from the extended electroweak gauge-boson and fermion sectors.Comment: 74 pages, 13 figures, 3 tables. v2: Matches version published in JHE
General Composite Higgs Models
We construct a general class of pseudo-Goldstone composite Higgs models,
within the minimal SO(5)/SO(4) coset structure, that are not necessarily of
moose-type. We characterize the main properties these models should have in
order to give rise to a Higgs mass around 125 GeV. We assume the existence of
relatively light and weakly coupled spin 1 and 1/2 resonances. In absence of a
symmetry principle, we introduce the Minimal Higgs Potential (MHP) hypothesis:
the Higgs potential is assumed to be one-loop dominated by the SM fields and
the above resonances, with a contribution that is made calculable by imposing
suitable generalizations of the first and second Weinberg sum rules. We show
that a 125 GeV Higgs requires light, often sub-TeV, fermion resonances. Their
presence can also be important for the models to successfully pass the
electroweak precision tests. Interestingly enough, the latter can also be
passed by models with a heavy Higgs around 320 GeV. The composite Higgs models
of the moose-type considered in the literature can be seen as particular limits
of our class of models.Comment: 51 pages, 12 figures, 5 appendices; v2: Corrected estimates of \delta
g_b in appendix B, references fixed, several minor improvements; v3: minor
improvements, to appear in JHE
A comparative study of the hydrogen-bonding patterns and prototropism in solid 2-thiocytosine (potential antileukemic agent) and cytosine, as studied by 1H-14N NQDR and QTAIM/ DFT
A potential antileukemic and anticancer agent, 2-thiocytosine (2-TC), has been studied experimentally in the solid state by 1H-14N NMR-NQR double resonance (NQDR) and theoretically by the quantum theory of atoms in molecules (QTAIM)/density functional theory (DFT). Eighteen resonance frequencies on 14N were detected at 180 K and assigned to particular nitrogen sites (−NH2, –N=, and –NH–) in 2-thiocytosine. Factors such as the nonequivalence of molecules (connected to the duplication of sites) and possible prototropic tautomerism (capable of modifying the type of site due to proton transfer) were taken into account during frequency assignment. The result of replacing oxygen with sulfur, which leads to changes in the intermolecular interaction pattern and molecular aggregation, is discussed. This study demonstrates the advantages of combining NQDR and DFT to extract detailed information on the H-bonding properties of crystals with complex H-bonding networks. Solid-state properties were found to have a profound impact on the stabilities and reactivities of both compounds
- …