2,982 research outputs found

    Effect of polar amino acid incorporation on Fmoc-diphenylalanine-based tetrapeptides.

    Full text link
    Peptide hydrogels show great promise as extracellular matrix mimics due to their tuneable, fibrous nature. Through incorporation of polar cationic, polar anionic or polar neutral amino acids into the Fmoc-diphenylalanine motif, we show that electrostatic charge plays a key role in the properties of the subsequent gelators. Specifically, we show that an inverse relationship exists for biocompatibility in the solution state versus the gel state for cationic and anionic peptides. Finally, we use tethered bilayer lipid membrane (tBLM) experiments to suggest a likely mode of cytotoxicity for tetrapeptides which exhibit cytotoxicity in the solution state

    Open defecation and childhood stunting in India: an ecological analysis of new data from 112 districts.

    Get PDF
    Poor sanitation remains a major public health concern linked to several important health outcomes; emerging evidence indicates a link to childhood stunting. In India over half of the population defecates in the open; the prevalence of stunting remains very high. Recently published data on levels of stunting in 112 districts of India provide an opportunity to explore the relationship between levels of open defecation and stunting within this population. We conducted an ecological regression analysis to assess the association between the prevalence of open defecation and stunting after adjustment for potential confounding factors. Data from the 2011 HUNGaMA survey was used for the outcome of interest, stunting; data from the 2011 Indian Census for the same districts was used for the exposure of interest, open defecation. After adjustment for various potential confounding factors--including socio-economic status, maternal education and calorie availability--a 10 percent increase in open defecation was associated with a 0.7 percentage point increase in both stunting and severe stunting. Differences in open defecation can statistically account for 35 to 55 percent of the average difference in stunting between districts identified as low-performing and high-performing in the HUNGaMA data. In addition, using a Monte Carlo simulation, we explored the effect on statistical power of the common practice of dichotomizing continuous height data into binary stunting indicators. Our simulation showed that dichotomization of height sacrifices statistical power, suggesting that our estimate of the association between open defecation and stunting may be a lower bound. Whilst our analysis is ecological and therefore vulnerable to residual confounding, these findings use the most recently collected large-scale data from India to add to a growing body of suggestive evidence for an effect of poor sanitation on human growth. New intervention studies, currently underway, may shed more light on this important issue

    Controlled interfacial assembly of 2D curved colloidal crystals and jammed shells

    Full text link
    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional micro-crystalline materials useful in fields as diverse as biomedicine1, materials science2, mineral flotation3 and food processing4. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials employed5-9. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.Comment: 18 pages, 5 figure

    Past endolithic life in metamorphic ocean crust

    Get PDF
    The known deep subsurface biosphere on Earth persists in diversified habitats, including deep within igneous rocks of the oceanic crust. Here, we extend the range of the deep subsurface biosphere to metamorphic ocean crust of a subduction zone. We report fossilised life in zeolite facies rocks, which formed by low grade metamorphism, from the southern Mariana trench. Dense carbonaceous spheroids, filaments, and Frutexites-like structures are preserved in these rocks, which are enriched in organic carbon but depleted in 13C. The distinct difference in the GDGT-0 vs. crenarchaeol and the branched vs. isoprenoid tetraether values between the inner and outer portions of these rocks indicate the in situ production of organic carbon. We demonstrate that these structures may result from the past activity of potential chemolithoautotrophs within the metamorphic crust, as implied by their morphologies, Raman spectra, carbon isotopes, and biomarker signatures, as well as the Fe oxidation state within whole rocks. We propose that fluid-rock reactions at temperatures within the tolerance of life during low grade metamorphism contributed to microbial subsistence within the biotope. The low grade metamorphic ocean crust of the subduction zone likely represents Earth’s deepest, and one of its largest, microbial ecosystems, which may potentially influence the deep carbon cycle

    Novel route for the epitaxial growth of (SrBa)Nb₂O₆ thick films by the sol-gel method using a self-template layer

    Get PDF
    Author name used in this publication: C. L. MakAuthor name used in this publication: K. H. Wong2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore