14 research outputs found

    The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation

    Get PDF
    The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome

    Recombinant Lysyl Oxidase Propeptide Protein Inhibits Growth and Promotes Apoptosis of Pre-Existing Murine Breast Cancer Xenografts

    Get PDF
    Lysyl oxidase propeptide (LOX-PP) ectopic overexpression inhibits the growth of cancer xenografts. Here the ability and mode of action of purified recombinant LOX-PP (rLOX-PP) protein to inhibit the growth of pre-existing xenografts was determined. Experimental approaches employed were direct intratumoral injection (i.t.) of rLOX-PP protein into murine breast cancer NF639 xenografts, and application of a slow release formulation of rLOX-PP implanted adjacent to tumors in NCR nu/nu mice (n = 10). Tumors were monitored for growth, and after sacrifice were subjected to immunohistochemical and Western blot analyses for several markers of proliferation, apoptosis, and for rLOX-PP itself. Direct i.t. injection of rLOX-PP significantly reduced tumor volume on days 20, 22 and 25 and tumor weight at harvest on day 25 by 30% compared to control. Implantation of beads preloaded with 35 micrograms rLOX-PP (n = 10) in vivo reduced tumor volume and weight at sacrifice when compared to empty beads (p<0.05). A 30% reduction of tumor volume on days 22 and 25 (p<0.05) and final tumor weight on day 25 (p<0.05) were observed with a reduced tumor growth rate of 60% after implantation. rLOX-PP significantly reduced the expression of proliferation markers and Erk1/2 MAP kinase activation, while prominent increases in apoptosis markers were observed. rLOX-PP was detected by immunohistochemistry in harvested rLOX-PP tumors, but not in controls. Data provide pre-clinical findings that support proof of principle for the therapeutic anti-cancer potential of rLOX-PP protein formulations

    TRAMP (tyrosine rich acidic matrix protein), a protein that co-purifies with lysyl oxidase from porcine skin. Identification of TRAMP as the dermatan sulphate proteoglycan-associated 22K extracellular matrix protein.

    No full text
    International audienceA protein (M(r)24 K) that co-purifies with porcine skin lysyl oxidase (M(r)34 K) has been isolated and characterised. Five variants of the 24 K protein were identified by Mono Q ion-exchange FPLC, as were four variants of lysyl oxidase. Amino acid analysis and partial sequencing revealed near identity of a 36-residue CNBr peptide from porcine skin lysyl oxidase to corresponding regions of the putative lysyl oxidase precursor derived from rat and human cDNA. The 24 K protein was found to be unrelated to lysyl oxidase, but comparison with a protein sequence database showed it to be the same as a recently described protein from bovine skin that is associated with dermatan sulphate proteoglycans. The 24 K protein is relatively rich in tyrosine, and isoelectric focussing shows it to be acidic, with pI's in the range 4.1 to 4.4. In view of these properties, we propose the name TRAMP (Tyrosine Rich Acidic Matrix Protein) to identify this protein. Though TRAMP appears not to be glycosylated, several experiments indicate the presence of sulphotyrosine residues. When assayed using an elastin substrate, the activity of lysyl oxidase is unaffected by TRAMP.A protein (M(r)24 K) that co-purifies with porcine skin lysyl oxidase (M(r)34 K) has been isolated and characterised. Five variants of the 24 K protein were identified by Mono Q ion-exchange FPLC, as were four variants of lysyl oxidase. Amino acid analysis and partial sequencing revealed near identity of a 36-residue CNBr peptide from porcine skin lysyl oxidase to corresponding regions of the putative lysyl oxidase precursor derived from rat and human cDNA. The 24 K protein was found to be unrelated to lysyl oxidase, but comparison with a protein sequence database showed it to be the same as a recently described protein from bovine skin that is associated with dermatan sulphate proteoglycans. The 24 K protein is relatively rich in tyrosine, and isoelectric focussing shows it to be acidic, with pI's in the range 4.1 to 4.4. In view of these properties, we propose the name TRAMP (Tyrosine Rich Acidic Matrix Protein) to identify this protein. Though TRAMP appears not to be glycosylated, several experiments indicate the presence of sulphotyrosine residues. When assayed using an elastin substrate, the activity of lysyl oxidase is unaffected by TRAMP
    corecore