25 research outputs found

    A novel xylan degrading β-D-xylosidase: purification and biochemical characterization

    Get PDF
    Aspergillus ochraceus, a thermotolerant fungus isolated in Brazil from decomposing materials, produced an extracellular b-xylosidase that was purified using DEAE-cellulose ion exchange chromatography, Sephadex G-100 and Biogel P-60 gel filtration. b-xylosidase is a glycoprotein (39 % carbohydrate content) and has a molecular mass of 137 kDa by SDS-PAGE, with optimal temperature and pH at 70 C and 3.0–5.5, respectively.b-xylosidase was stable in acidic pH (3.0–6.0) and 70 C for 1 h. The enzyme was activated by 5 mM MnCl2 (28 %)and MgCl2 (20 %) salts. The b-xylosidase produced by A. ochraceus preferentially hydrolyzed p-nitrophenyl-b- D-xylopyranoside, exhibiting apparent Km and Vmax values of 0.66 mM and 39 U (mg protein)-1 respectively, and to a lesser extent p-nitrophenyl-b-D-glucopyranoside. The enzyme was able to hydrolyze xylan from different sources,suggesting a novel b-D-xylosidase that degrades xylan. HPLC analysis revealed xylans of different compositions which allowed explaining the differences in specificity observed by b-xylosidase. TLC confirmed the capacity.This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and the Conselho de Desenvolvimento Científico e Tecnológico (CNPq). J. A. J. and M. L. T. M. P are Research Fellows of CNPq. M. M. was a recipient of a FAPESP fellowship and this work is part of her Doctoral Thesis. It is also part of the project SISBIOTA CNPq: 563260/2010-6 and FAPESP: 2010/52322-3

    Influence of temperature on the properties of the xylanolytic enzymes of the thermotolerant fungus Aspergillus phoenicis

    No full text
    This study reports on the effects of growth temperature on the secretion and some properties of the xylanase and beta-xylosidase activities produced by a thermotolerant Aspergillus phoenicis. Marked differences were observed when the organism was grown on xylan-supplemented medium at 25 degreesC or 42 degreesC. Production of xylanolytic enzymes reached maximum levels after 72 h of growth at 42 degreesC; and levels were three- to five-fold higher than at 25 degreesC. Secretion of xylanase and beta-xylosidase was also strongly stimulated at the higher temperature. The optimal temperature was 85 degreesC for extracellular and 90 degreesC for intracellular beta-xylosidase activity, independent of the growth temperature. The optimum temperature for extracellular xylanase increased from 50 degreesC to 55 degreesC when the fungus was cultivated at 42 degreesC. At the higher temperature, the xylanolytic enzymes produced by A. phoenicis showed increased thermo stability, with changes in the profiles of pH optima. The chromatographic profiles were distinct when samples obtained from cultures grown at different temperatures were eluted from DEAE-cellulose and Biogel P-60 columns

    Xylanases from fungi: properties and industrial applications

    No full text
    Xylan is the principal type of hemicellulose. It is a linear polymer of beta-D-xylopyranosyl units linked by (1-4) glycosidic bonds. In nature, the polysaccharide backbone may be added to 4-O-methyl-alpha-D-glucuronopyranosyl units, acetyl groups, alpha-L-arabinofuranosyl, etc., in variable proportions. An enzymatic complex is responsible for the hydrolysis of xylan, but the main enzymes involved are endo-1,4-beta-xylanase and beta-xylosidase. These enzymes are produced by fungi, bacteria, yeast, marine algae, protozoans, snails, crustaceans, insect, seeds, etc., but the principal commercial source is filamentous fungi. Recently, there has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. This review describes some properties of xylan and its metabolism, as well as the biochemical properties of xylanases and their commercial applications
    corecore