12,358 research outputs found
Monte Carlo study of gg->H+jets contribution to Vector Boson Fusion Higgs production at the LHC
The contribution of gg->H+jets production process to the vector boson fusion
production of the Higgs boson, VV->H, at LHC was evaluated with the ALPGEN
generator and the PYTHIA shower Monte Carlo including a jet-parton matching
procedure. After the experimental like event selections applied at PYTHIA
particle level, the contribution was found to be 4-5 % for a Higgs boson mass
of 120 GeV
Bosonic and fermionic Weinberg-Joos (j,0)+ (0,j) states of arbitrary spins as Lorentz-tensors or tensor-spinors and second order theory
We propose a general method for the description of arbitrary single spin-j
states transforming according to (j,0)+(0,j) carrier spaces of the Lorentz
algebra in terms of Lorentz-tensors for bosons, and tensor-spinors for
fermions, and by means of second order Lagrangians. The method allows to avoid
the cumbersome matrix calculus and higher \partial^{2j} order wave equations
inherent to the Weinberg-Joos approach. We start with reducible Lorentz-tensor
(tensor-spinor) representation spaces hosting one sole (j,0)+(0,j) irreducible
sector and design there a representation reduction algorithm based on one of
the Casimir invariants of the Lorentz algebra. This algorithm allows us to
separate neatly the pure spin-j sector of interest from the rest, while
preserving the separate Lorentz- and Dirac indexes. However, the Lorentz
invariants are momentum independent and do not provide wave equations. Genuine
wave equations are obtained by conditioning the Lorentz-tensors under
consideration to satisfy the Klein-Gordon equation. In so doing, one always
ends up with wave equations and associated Lagrangians that are second order in
the momenta. Specifically, a spin-3/2 particle transforming as (3/2,0)+ (0,3/2)
is comfortably described by a second order Lagrangian in the basis of the
totally antisymmetric Lorentz tensor-spinor of second rank, \Psi_[ \mu\nu].
Moreover, the particle is shown to propagate causally within an electromagnetic
background. In our study of (3/2,0)+(0,3/2) as part of \Psi_[\mu\nu] we
reproduce the electromagnetic multipole moments known from the Weinberg-Joos
theory. We also find a Compton differential cross section that satisfies
unitarity in forward direction. The suggested tensor calculus presents itself
very computer friendly with respect to the symbolic software FeynCalc.Comment: LaTex 34 pages, 1 table, 8 figures. arXiv admin note: text overlap
with arXiv:1312.581
Spin-exchange relaxation free magnetometry with Cs vapor
We describe a Cs atomic magnetometer operating in the spin-exchange
relaxation-free (SERF) regime. With a vapor cell temperature of
we achieve intrinsic magnetic resonance widths corresponding to an electron spin-relaxation rate of when the spin-exchange rate is . We
also observe an interesting narrowing effect due to diffusion. Signal-to-noise
measurements yield a sensitivity of about .
Based on photon shot noise, we project a sensitivity of . A theoretical optimization of the magnetometer indicates
sensitivities on the order of should be achievable in a
volume. Because Cs has a higher saturated vapor pressure than
other alkali metals, SERF magnetometers using Cs atoms are particularly
attractive in applications requiring lower temperatures.Comment: 8 pages, 6 figures. submitted to PR
Top quark physics in hadron collisions
The top quark is the heaviest elementary particle observed to date. Its large
mass makes the top quark an ideal laboratory to test predictions of
perturbation theory concerning heavy quark production at hadron colliders. The
top quark is also a powerful probe for new phenomena beyond the Standard Model
of particle physics. In addition, the top quark mass is a crucial parameter for
scrutinizing the Standard Model in electroweak precision tests and for
predicting the mass of the yet unobserved Higgs boson. Ten years after the
discovery of the top quark at the Fermilab Tevatron top quark physics has
entered an era where detailed measurements of top quark properties are
undertaken. In this review article an introduction to the phenomenology of top
quark production in hadron collisions is given, the lessons learned in Tevatron
Run I are summarized, and first Run II results are discussed. A brief outlook
to the possibilities of top quark research a the Large Hadron Collider,
currently under construction at CERN, is included.Comment: 84 pages, 32 figures, accepted for publication by Reports on Progress
in Physic
Cancellation of nonlinear Zeeman shifts with light shifts
Nonlinear Zeeman (NLZ) shifts arising from magnetic-field mixing of the two
hyperfine ground-states in alkali atoms lead to splitting of magnetic-resonance
lines. This is a major source of sensitivity degradation and the so-called
"heading errors" of alkali-vapor atomic magnetometers operating in the
geophysical field range (B approx. 0.2-0.7 G). Here, it is shown theoretically
and experimentally that NLZ shifts can be effectively canceled by light shifts
caused by a laser field of appropriate intensity, polarization and frequency, a
technique that can be readily applied in practical situations.Comment: 5 pages, 5 figures, to be published in PR
- …