6,638 research outputs found
Design approaches and materials processes for ultrahigh efficiency lattice mismatched multi-junction solar cells
In this study, we report synthesis of large area
(>2cm^2), crack-free GaAs and GaInP double
heterostructures grown in a multi-junction solar cell-like
structure by MOCVD. Initial solar cell data are also
reported for GaInP top cells. These samples were grown
on Ge/Si templates fabricated using wafer bonding and ion
implantation induced layer transfer techniques. The double
heterostructures exhibit radiative emission with uniform
intensity and wavelength in regions not containing
interfacial bubble defects. The minority carrier lifetime of
~1ns was estimated from photoluminescence decay
measurements in both double heterostructures.
We also report on the structural characteristics of
heterostructures, determined via atomic force microscopy
and transmission electron microscopy, and correlate these
characteristics to the spatial variation of the minority
carrier lifetime
Optimization of DNA extraction from human urinary samples for mycobiome community profiling.
IntroductionRecent data suggest the urinary tract hosts a microbial community of varying composition, even in the absence of infection. Culture-independent methodologies, such as next-generation sequencing of conserved ribosomal DNA sequences, provide an expansive look at these communities, identifying both common commensals and fastidious organisms. A fundamental challenge has been the isolation of DNA representative of the entire resident microbial community, including fungi.Materials and methodsWe evaluated multiple modifications of commonly-used DNA extraction procedures using standardized male and female urine samples, comparing resulting overall, fungal and bacterial DNA yields by quantitative PCR. After identifying protocol modifications that increased DNA yields (lyticase/lysozyme digestion, bead beating, boil/freeze cycles, proteinase K treatment, and carrier DNA use), all modifications were combined for systematic confirmation of optimal protocol conditions. This optimized protocol was tested against commercially available methodologies to compare overall and microbial DNA yields, community representation and diversity by next-generation sequencing (NGS).ResultsOverall and fungal-specific DNA yields from standardized urine samples demonstrated that microbial abundances differed significantly among the eight methods used. Methodologies that included multiple disruption steps, including enzymatic, mechanical, and thermal disruption and proteinase digestion, particularly in combination with small volume processing and pooling steps, provided more comprehensive representation of the range of bacterial and fungal species. Concentration of larger volume urine specimens at low speed centrifugation proved highly effective, increasing resulting DNA levels and providing greater microbial representation and diversity.ConclusionsAlterations in the methodology of urine storage, preparation, and DNA processing improve microbial community profiling using culture-independent sequencing methods. Our optimized protocol for DNA extraction from urine samples provided improved fungal community representation. Use of this technique resulted in equivalent representation of the bacterial populations as well, making this a useful technique for the concurrent evaluation of bacterial and fungal populations by NGS
Relational lattices via duality
The natural join and the inner union combine in different ways tables of a
relational database. Tropashko [18] observed that these two operations are the
meet and join in a class of lattices-called the relational lattices- and
proposed lattice theory as an alternative algebraic approach to databases.
Aiming at query optimization, Litak et al. [12] initiated the study of the
equational theory of these lattices. We carry on with this project, making use
of the duality theory developed in [16]. The contributions of this paper are as
follows. Let A be a set of column's names and D be a set of cell values; we
characterize the dual space of the relational lattice R(D, A) by means of a
generalized ultrametric space, whose elements are the functions from A to D,
with the P (A)-valued distance being the Hamming one but lifted to subsets of
A. We use the dual space to present an equational axiomatization of these
lattices that reflects the combinatorial properties of these generalized
ultrametric spaces: symmetry and pairwise completeness. Finally, we argue that
these equations correspond to combinatorial properties of the dual spaces of
lattices, in a technical sense analogous of correspondence theory in modal
logic. In particular, this leads to an exact characterization of the finite
lattices satisfying these equations.Comment: Coalgebraic Methods in Computer Science 2016, Apr 2016, Eindhoven,
Netherland
Bounded-Angle Spanning Tree: Modeling Networks with Angular Constraints
We introduce a new structure for a set of points in the plane and an angle
, which is similar in flavor to a bounded-degree MST. We name this
structure -MST. Let be a set of points in the plane and let be an angle. An -ST of is a spanning tree of the
complete Euclidean graph induced by , with the additional property that for
each point , the smallest angle around containing all the edges
adjacent to is at most . An -MST of is then an
-ST of of minimum weight. For , an -ST does
not always exist, and, for , it always exists. In this paper,
we study the problem of computing an -MST for several common values of
.
Motivated by wireless networks, we formulate the problem in terms of
directional antennas. With each point , we associate a wedge of
angle and apex . The goal is to assign an orientation and a radius
to each wedge , such that the resulting graph is connected and its
MST is an -MST. (We draw an edge between and if , , and .) Unsurprisingly, the problem of computing an
-MST is NP-hard, at least for and . We
present constant-factor approximation algorithms for .
One of our major results is a surprising theorem for ,
which, besides being interesting from a geometric point of view, has important
applications. For example, the theorem guarantees that given any set of
points in the plane and any partitioning of the points into triplets,
one can orient the wedges of each triplet {\em independently}, such that the
graph induced by is connected. We apply the theorem to the {\em antenna
conversion} problem
Inflation with General Initial Conditions for Scalar Perturbations
We explore the possibility of a single field quasi-de Sitter inflationary
model with general initial state for primordial fluctuations. In this paper,
first we compute the power spectrum and the bispectrum of scalar perturbations
with coherent state as the initial state. We find that a large class of
coherent states are indistinguishable from the Bunch-Davies vacuum state and
hence consistent with the current observations. In case of a more general
initial state built over Bunch-Davies vacuum state, we show that the
constraints on the initial state from observed power spectrum and local
bispectrum are relatively weak and for quasi-de Sitter inflation a large number
of initial states are consistent with the current observations. However,
renormalizability of the energy-momentum tensor of the fluctuations constraints
the initial state further.Comment: Updated to match published version, 20 page
Arctic cloud macrophysical characteristics from CloudSat and CALIPSO
The lidar and radar profiling capabilities of the CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder (CALIPSO) satellites provide opportunities to improve the characterization of cloud properties. An Arctic cloud climatology based on their observations may be fundamentally different from earlier Arctic cloud climatologies based on passive satellite observations, which have limited contrast between the cloud and underlying surface. Specifically, the Radar–Lidar Geometrical Profile product (RL-GEOPROF) provides cloud vertical profiles from the combination of active lidar and radar. Based on this data product for the period July 2006 to March 2011, this paper presents a new cloud macrophysical property characteristic analysis for the Arctic, including cloud occurrence fraction (COF), vertical distributions, and probability density functions (PDF) of cloud base and top heights. Seasonal mean COF shows maximum values in autumn, minimum values in winter, and moderate values in spring and summer; this seasonality ismore prominent over the Arctic Ocean on the Pacific side. The mean ratios of multi-layer cloud to total cloud over the ocean and land are between 24% and 28%. Low-level COFs are higher over ocean than over land. The ratio of low-level cloud to total cloud is also higher over ocean. Middle-level and high-level COFs are smaller over ocean than over land except in summer, and the ratios of middle-level and highlevel clouds to total cloud are also smaller over ocean. Over the central Arctic Ocean, PDFs of cloud top height and cloud bottomheight show (1) two cloud top height PDF peaks, one for cloud top heights lower than 1200 mand another between 7 and 9 km; and (2) high frequency for cloud base below 1000 m with the majority of cloud base heights lower than 2000 m
Radiative Energy Budget Studies Using Observations from the Earth Radiation Budget Experiment (ERBE)
Our research activities under this NASA grant have focused on two broad topics associated with the Earth Radiation Budget Experiment (ERBE): (1) the role of clouds and the surface in modifying the radiative balance; and (2) the spatial and temporal variability of the earth's radiation budget. Each of these broad topics is discussed separately in the text that follows. The major points of the thesis are summarized in section 3 of this report. Other dissertation focuses on deriving the radiation budget over the TOGA COARE region
Sensitivity analyses for effect modifiers not observed in the target population when generalizing treatment effects from a randomized controlled trial: Assumptions, models, effect scales, data scenarios, and implementation details
Background: Randomized controlled trials are often used to inform policy and
practice for broad populations. The average treatment effect (ATE) for a target
population, however, may be different from the ATE observed in a trial if there
are effect modifiers whose distribution in the target population is different
that from that in the trial. Methods exist to use trial data to estimate the
target population ATE, provided the distributions of treatment effect modifiers
are observed in both the trial and target population -- an assumption that may
not hold in practice.
Methods: The proposed sensitivity analyses address the situation where a
treatment effect modifier is observed in the trial but not the target
population. These methods are based on an outcome model or the combination of
such a model and weighting adjustment for observed differences between the
trial sample and target population. They accommodate several types of outcome
models: linear models (including single time outcome and pre- and
post-treatment outcomes) for additive effects, and models with log or logit
link for multiplicative effects. We clarify the methods' assumptions and
provide detailed implementation instructions.
Illustration: We illustrate the methods using an example generalizing the
effects of an HIV treatment regimen from a randomized trial to a relevant
target population.
Conclusion: These methods allow researchers and decision-makers to have more
appropriate confidence when drawing conclusions about target population
effects
- …