187 research outputs found

    Methamphetamine withdrawal induces activation of CRF neurons in the brain stress system in parallel with an increased activity of cardiac sympathetic pathways.

    Get PDF
    Methamphetamine (METH) addiction is a major public health problem in some countries. There is evidence to suggest that METH use is associated with increased risk of developing cardiovascular problems. Here, we investigated the effects of chronic METH administration and withdrawal on the activation of the brain stress system and cardiac sympathetic pathways. Mice were treated with METH (2 mg/kg, i.p.) for 10 days and left to spontaneous withdraw for 7 days. The number of corticotrophin-releasing factor (CRF), c-Fos, and CRF/c-Fos neurons was measured by immunohistochemistry in the paraventricular nucleus of the hypothalamus (PVN) and the oval region of the bed nucleus of stria terminalis (ovBNST), two regions associated with cardiac sympathetic control. In parallel, levels of catechol-o-methyl-transferase (COMT), tyrosine hydroxylase (TH), and heat shock protein 27 (Hsp27) were measured in the heart. In the brain, chronic-METH treatment enhanced the number of c-Fos neurons and the CRF neurons with c-Fos signal (CRF+/c-Fos+) in PVN and ovBNST. METH withdrawal increased the number of CRF+neurons. In the heart, METH administration induced an increase in soluble (S)-COMT and membrane-bound (MB)-COMT without changes in phospho (p)-TH, Hsp27, or pHsp27. Similarly, METH withdrawal increased the expression of S- and MB-COMT. In contrast to chronic treatment, METH withdrawal enhanced levels of (p)TH and (p)Hsp27 in the heart. Overall, our results demonstrate that chronic METH administration and withdrawal activate the brain CRF systems associated with the heart sympathetic control and point towards a METH withdrawal induced activation of sympathetic pathways in the heart. Our findings provide further insight in the mechanism underlining the cardiovascular risk associated with METH use and proposes targets for its treatment

    Pharmacological and Anatomical Evidence for an Interaction Between mGluR5- and GABAA α1-Containing Receptors in the Discriminative Stimulus Effects of Ethanol

    No full text
    The discriminative stimulus properties of ethanol are mediated in part by positive modulation of GABA(A) receptors. Recent evidence indicates that metabotropic glutamate receptor subtype 5 (mGluR5) activity can influence GABA(A) receptor function. Therefore, the purpose of this work was to examine the potential involvement of mGluR5 in the discriminative stimulus effects of ethanol. In rats trained to discriminate ethanol (1 g/kg, intragastric gavage (i.g.)) from water, 2-methyl-6-(phenylethyl)-pyridine (MPEP) (1–50 mg/kg, i.p.) a selective noncompetitive antagonist of the mGlu5 receptor did not produce ethanol-like stimulus properties. However, pretreatment with MPEP (30 mg/kg) reduced the stimulus properties of ethanol as indicated by significant reductions in ethanol-appropriate responding, specifically at 0.5 and 1 g/kg ethanol, and a failure of ethanol test doses (1 and 2 g/kg) to fully substitute for the ethanol training dose. To test whether mGluR5 antagonism altered the GABA(A) receptor component of the ethanol stimulus, the ability of MPEP to modulate pentobarbital and diazepam substitution for ethanol was assessed. Pentobarbital substitution (1–10 mg/kg, i.p.) for ethanol was not altered by MPEP pretreatment. However, MPEP pretreatment inhibited the ethanol-like stimulus properties of diazepam (5 mg/kg, i.p.). To examine a potential anatomical basis for these pharmacological findings, expression patterns of mGluR5- and benzodiazepine-sensitive GABA(A) α1-containing receptors were examined by dual-label fluorescent immunohistochemistry with visualization by confocal microscopy. Results indicated that mGluR5- and GABA(A) α1-containing receptors were both coexpressed in limbic brain regions and colocalized on the same cells in specific brain regions including the amygdala, hippocampus, globus pallidus, and ventral pallidum. Together, these findings suggest an interaction between mGluR5- and benzodiazepine-sensitive GABA(A) receptors in mediating ethanol discrimination
    • 

    corecore