18 research outputs found
Functional Electrical Stimulation of Intrinsic Laryngeal Muscles under Varying Loads in Exercising Horses
Bilateral vocal fold paralysis (BVCP) is a life threatening condition and appears to be a good candidate for therapy using functional electrical stimulation (FES). Developing a working FES system has been technically difficult due to the inaccessible location and small size of the sole arytenoid abductor, the posterior cricoarytenoid (PCA) muscle. A naturally-occurring disease in horses shares many functional and etiological features with BVCP. In this study, the feasibility of FES for equine vocal fold paralysis was explored by testing arytenoid abduction evoked by electrical stimulation of the PCA muscle. Rheobase and chronaxie were determined for innervated PCA muscle. We then tested the hypothesis that direct muscle stimulation can maintain airway patency during strenuous exercise in horses with induced transient conduction block of the laryngeal motor nerve. Six adult horses were instrumented with a single bipolar intra-muscular electrode in the left PCA muscle. Rheobase and chronaxie were within the normal range for innervated muscle at 0.55±0.38 v and 0.38±0.19 ms respectively. Intramuscular stimulation of the PCA muscle significantly improved arytenoid abduction at all levels of exercise intensity and there was no significant difference between the level of abduction achieved with stimulation and control values under moderate loads. The equine larynx may provide a useful model for the study of bilateral fold paralysis
The Mediterranean Sea Regime Shift at the End of the 1980s, and Intriguing Parallelisms with Other European Basins
Background: Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables,
which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning
associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur
synchronously in separated basins.
Principal Findings: In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems.
Conclusions: Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that
encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin) anthropogenic drivers, such as eutrophication or fishing, from larger scale (hemispheric) climate drivers
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Repeat Traumatic Brain Injury in the Juvenile Rat Is Associated with Increased Axonal Injury and Cognitive Impairments
Among the enormous population of head-injured children and young adults are a growing subpopulation who experience repeat traumatic brain injury (RTBI). The most common cause of RTBI in this age group is sports-related concussions, and athletes who have experienced a head injury are at greater risk for subsequent TBI, with consequent long-term cognitive dysfunction. While several animal models have been proposed to study RTBI, they have been shown to either produce injuries too severe, were conducted in adults, involved craniotomy, or failed to show behavioral deficits. A closed head injury model for postnatal day 35 rats was established, and single and repeat TBI (1-day interval) were examined histologically for axonal injury and behaviorally by the novel object recognition (NOR) task. The results from the current study demonstrate that an experimental closed head injury in the rodent with low mortality rates and absence of gross pathology can produce measurable cognitive deficits in a juvenile age group. The introduction of a second injury 24 h after the first impact resulted in increased axonal injury, astrocytic reactivity and increased memory impairment in the NOR task. The histological evidence demonstrates the potential usefulness of this RTBI model for studying the impact and time course of RTBI as it relates to the pediatric and young adult population. This study marks the first critical step in experimentally addressing the consequences of concussions and the cumulative effects of RTBI in the developing brain
Phylogenetic analysis of viruses in tuscan vitis vinifera sylvestris (Gmeli) hegi
The health status of the native grapevine Vitis vinifera subsp. sylvestris (Gmeli) Hegi in natural areas in Europe has received little attention. A survey was carried out on wild grapevines in Tuscany (Italy), where isolates of the Grapevine rupestris stem pitting virus (GRSPaV), Grapevine leafroll-associated virus 1 and 3 (GLRaV-1 and GLRaV-3) and Grapevine virus A (GVA) were detected. The complete coat protein (CP) region of these isolates was sequenced to investigate the relationship of the viral variants from Tuscan wild grapevines with isolates from different geographical origins. According to the phylogenetic analyses, GLRaV-1 and GLRaV-3 isolates from Tuscan wild grapevines clustered with isolates from cultivated grapevines with nucleotide sequence identities ranging from 66% to 87% and from 72.5% to 99% respectively, without any correlation between the distribution and geographical origin. Conversely, GRSPaV and GVA isolates clustered together with other Italian isolates from V. vinifera with nucleotide sequence identities ranging from 71.14% to 96.12% and from 73.5% to 92%, respectively. Our analysis of the whole amino acid sequences revealed a high conservation level for the studied proteins explained by a selective pressure on this genomic region, probably due to functional constraints imposed on CP, such as specific interactions with cellular receptors in the insect vectors necessary for successful transmission. In addition, analyses of genetic recombination suggest no significant point mutations that might play a significant role in genetic diversification. The dN/dS ratio also estimated a low number of non-silent mutations, highlighting the purifying selective pressure. The widespread distribution of the Rugose wood complex (GRSPaV and GVA associated disease) in comparison with the Grapevine Leafroll associated viruses (GLRaV-1 and -3) could explain the major geographical correlation found for the viral variants detected in Tuscany
The granzyme B-Serpinb9 axis controls the fate of lymphocytes after lysosomal stress
Cytotoxic lymphocytes (CLs) contain lysosome-related organelles (LROs) that perform the normal degradative functions of the lysosome, in addition to storage and release of powerful cytotoxins employed to kill virally infected or abnormal cells. Among these cytotoxins is granzyme B (GrB), a protease that has also been implicated in activation (restimulation)-induced cell death of natural killer (NK) and T cells, but the underlying mechanism and its regulation are unclear. Here we show that restimulation of previously activated human or mouse lymphocytes induces lysosomal membrane permeabilisation (LMP), followed by GrB release from LROs into the CL cytosol. The model lysosomal stressors sphingosine and Leu-Leu-methyl-ester, and CLs from gene-targeted mice were used to show that LMP releases GrB in both a time- and concentration-dependent manner, and that the liberated GrB is responsible for cell death. The endogenous GrB inhibitor Serpinb9 (Sb9) protects CLs against LMP-induced death but is decreasingly effective as the extent of LMP increases. We also used these model stressors to show that GrB is the major effector of LMP-mediated death in T cells, but that in NK cells additional effectors are released, making GrB redundant. We found that limited LMP and GrB release occurs constitutively in proliferating lymphocytes and in NK cells engaged with targets in vitro. In Ectromelia virus-infected lymph nodes, working NK cells lacking Sb9 are more susceptible to GrB-mediated death. Taken together, these data show that a basal level of LMP occurs in proliferating and activated lymphocytes, and is increased on restimulation. LMP releases GrB from LROs into the lymphocyte cytoplasm and its ensuing interaction with Sb9 dictates whether or not the cell survives. The GrB-Sb9 nexus may therefore represent an additional mechanism of limiting lymphocyte lifespan and populations