222 research outputs found
Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer
Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX8C disulfide that, when substituted for AX8A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen
Feminist health psychology and abortion : towards a politics of transversal relations of commonality
In 1992 Speckhard and Rue argued in the Journal of Social Issues for the recognition of a diagnostic category, post-abortion syndrome (PAS). This term was first used in 1981 by Vincent Rue in testimony to the American Congress, but was only formalised in a published paper a decade later. Speckhard and Rue (1992) posit that abortion is a psychosocial stressor that may cause mild distress through to severe trauma, creating the need for a continuum of categories, these being post-abortion distress, post-abortion syndrome and post-abortion psychosis. PAS, which is the main focus of their paper, and which has taken root in some professional language as well as lay anti-abortion discourse, is described as a type of post-traumatic stress disorder
Neddylation inhibition upregulates PD‐L1 expression and enhances the efficacy of immune checkpoint blockade in glioblastoma
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149569/1/ijc32379_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149569/2/ijc32379-sup-0001-Supinfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149569/3/ijc32379.pd
Lovastatin sensitized human glioblastoma cells to TRAIL-induced apoptosis
Synergy study with chemotherapeutic agents is a common in vitro strategy in the search for effective cancer therapy. For non-chemotherapeutic agents, efficacious synergistic effects are uncommon. Here, we have examined two non-chemotherapeutic agents for synergistic effects: lovastatin and Tumor Necrosis Factor (TNF)-related apoptosis-inducing ligand (TRAIL) for synergistic effects; on three human malignant glioblastoma cell lines, M059K, M59J, and A172. Cells treated with lovastatin plus TRAIL for 48 h showed 50% apoptotic cell death, whereas TRAIL alone (1,000 ng/ml) did not, suggesting that lovastatin sensitized the glioblastoma cells to TRAIL attack. Cell cycle analysis indicated that lovastatin increased G0–G1 arrest in these cells. Annexin V study demonstrated that apoptosis was the predominant mode of cell death. We conclude that the combination of lovastatin and TRAIL enhances apoptosis synergistically. Moreover, lovastatin sensitized glioblastoma cells to TRAIL, suggesting a new strategy to treat glioblastoma
Modulation of the immune response by nematode secreted acetylcholinesterase revealed by heterologous expression in Trypanosoma musculi
Nematode parasites secrete molecules which regulate the mammalian immune system, but their genetic intractability is a major impediment to identifying and characterising the biological effects of these molecules. We describe here a novel system for heterologous expression of helminth secreted proteins in the natural parasite of mice, Trypanosoma musculi, which can be used to analyse putative immunomodulatory functions. Trypanosomes were engineered to express a secreted acetylcholinesterase from Nippostrongylus brasiliensis. Infection of mice with transgenic parasites expressing acetylcholinesterase resulted in truncated infection, with trypanosomes cleared early from the circulation. Analysis of cellular phenotypes indicated that exposure to acetylcholinesterase in vivo promoted classical activation of macrophages (M1), with elevated production of nitric oxide and lowered arginase activity. This most likely occurred due to the altered cytokine environment, as splenocytes from mice infected with T. musculi expressing acetylcholinesterase showed enhanced production of IFNγ and TNFα, with diminished IL-4, IL-13 and IL-5. These results suggest that one of the functions of nematode secreted acetylcholinesterase may be to alter the cytokine environment in order to inhibit development of M2 macrophages which are deleterious to parasite survival. Transgenic T. musculi represents a valuable new vehicle to screen for novel immunoregulatory proteins by extracellular delivery in vivo to the murine host
Expression of pendrin in benign and malignant human thyroid tissues
The Pendred syndrome gene (PDS) encodes a transmembrane protein, pendrin, which is expressed in follicular thyroid cells and participates in the apical iodide transport. Pendrin expression has been studied in various thyroid neoplasms by means of immunohistochemistry (IHC), Western blot and RT–quantitative real-time PCR. The expression was related to the functional activity of the thyroid tissue. Follicular cells of normal, nodular goitre and Graves' disease tissues express pendrin at the apical pole of the thyrocytes. In follicular adenomas, pendrin was detected in cell membranes and cytoplasm simultaneously in 10 out of 15 cases. Pendrin protein was detected in 73.3 and 76.7% of the follicular (FTC) and papillary (PTC) thyroid carcinomas, respectively, where pendrin was solely localised inside the cytoplasm. An extensive intracellular immunostaining of pendrin was observed in six out of 11 (54.5%) of positive FTCs and 19 out of 23 (82%) of PTCs. Focal reactivity was detected in one follicular- and three papillary carcinomas, whereas pendrin protein was absent in three of 15 FTC and four of 30 PTC; mRNA of pendrin was detected in 92.4% of thyroid tumours. The relative mRNA expression of pendrin was lower in cancers than in normal thyroid tissues (P<0.001). The pendrin protein level was found to parallel its mRNA expression, which was not, however, related to the tumour size and tumour stage. In conclusion, pendrin is expressed in the majority of differentiated thyroid tumours with high individual variability but its targeting to the apical cell membrane is affected
A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme
Δ9-Tetrahydrocannabinol (THC) and other cannabinoids inhibit tumour growth and angiogenesis in animal models, so their potential application as antitumoral drugs has been suggested. However, the antitumoral effect of cannabinoids has never been tested in humans. Here we report the first clinical study aimed at assessing cannabinoid antitumoral action, specifically a pilot phase I trial in which nine patients with recurrent glioblastoma multiforme were administered THC intratumoraly. The patients had previously failed standard therapy (surgery and radiotherapy) and had clear evidence of tumour progression. The primary end point of the study was to determine the safety of intracranial THC administration. We also evaluated THC action on the length of survival and various tumour-cell parameters. A dose escalation regimen for THC administration was assessed. Cannabinoid delivery was safe and could be achieved without overt psychoactive effects. Median survival of the cohort from the beginning of cannabinoid administration was 24 weeks (95% confidence interval: 15–33). Δ9-Tetrahydrocannabinol inhibited tumour-cell proliferation in vitro and decreased tumour-cell Ki67 immunostaining when administered to two patients. The fair safety profile of THC, together with its possible antiproliferative action on tumour cells reported here and in other studies, may set the basis for future trials aimed at evaluating the potential antitumoral activity of cannabinoids
Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: Analysis of single-agent and combined modality approaches
Surgical resection followed by radiotherapy and temozolomide in newly diagnosed glioblastoma can prolong survival, but it is not curative. For patients with disease progression after frontline therapy, there is no standard of care, although further surgery, chemotherapy, and radiotherapy may be used. Antiangiogenic therapies may be appropriate for treating glioblastomas because angiogenesis is critical to tumor growth. In a large, noncomparative phase II trial, bevacizumab was evaluated alone and with irinotecan in patients with recurrent glioblastoma; combination treatment was associated with an estimated 6-month progression-free survival (PFS) rate of 50.3%, a median overall survival of 8.9 months, and a response rate of 37.8%. Single-agent bevacizumab also exceeded the predetermined threshold of activity for salvage chemotherapy (6-month PFS rate, 15%), achieving a 6-month PFS rate of 42.6% (p < 0.0001). On the basis of these results and those from another phase II trial, the US Food and Drug Administration granted accelerated approval of single-agent bevacizumab for the treatment of glioblastoma that has progressed following prior therapy. Potential antiangiogenic agents-such as cilengitide and XL184-also show evidence of single-agent activity in recurrent glioblastoma. Moreover, the use of antiangiogenic agents with radiation at disease progression may improve the therapeutic ratio of single-modality approaches. Overall, these agents appear to be well tolerated, with adverse event profiles similar to those reported in studies of other solid tumors. Further research is needed to determine the role of antiangiogenic therapy in frontline treatment and to identify the optimal schedule and partnering agents for use in combination therapy
Indicated prevention interventions for anxiety in children and adolescents: a review and meta-analysis of school-based programs
Anxiety disorders are among the most common youth mental health disorders. Early intervention can reduce elevated anxiety symptoms. School-based interventions exist but it is unclear how effective targeted approaches are for reducing symptoms of anxiety. This review and meta-analysis aimed to determine the effectiveness of school-based indicated interventions for symptomatic children and adolescents. The study was registered with PROSPERO [CRD42018087628]. We searched MEDLINE, EMBASE, PsycINFO, and the Cochrane Library for randomised-controlled trials comparing indicated programs for child and adolescent (5–18 years) anxiety to active or inactive control groups. Data were extracted from papers up to December 2019. The primary outcome was efficacy (mean change in anxiety symptom scores). Sub-group and sensitivity analyses explored intervention intensity and control type. We identified 20 studies with 2076 participants. Eighteen studies were suitable for meta-analysis. A small positive effect was found for indicated programs compared to controls on self-reported anxiety symptoms at post-test (g = − 0.28, CI = − 0.50, − 0.05, k = 18). This benefit was maintained at 6 (g = − 0.35, CI = − 0.58, − 0.13, k = 9) and 12 months (g = − 0.24, CI = − 0.48, 0.00, k = 4). Based on two studies, > 12 month effects were very small (g = − 0.01, CI = − 0.38, 0.36). No differences were found based on intervention intensity or control type. Risk of bias and variability between studies was high (I2 = 78%). Findings show that school-based indicated programs for child and adolescent anxiety can produce small beneficial effects, enduring for up to 12 months. Future studies should include long-term diagnostic assessments
- …