8 research outputs found

    RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle

    Get PDF
    BACKGROUND: The selective breeding of cattle with high-feed efficiencies (FE) is an important goal of beef and dairy cattle producers. Global gene expression patterns in relevant tissues can be used to study the functions of genes that are potentially involved in regulating FE. In the present study, high-throughput RNA sequencing data of liver biopsies from 19 dairy cows were used to identify differentially expressed genes (DEGs) between high- and low-FE groups of cows (based on Residual Feed Intake or RFI). Subsequently, a profile of the pathways connecting the DEGs to FE was generated, and a list of candidate genes and biomarkers was derived for their potential inclusion in breeding programmes to improve FE. RESULTS: The bovine RNA-Seq gene expression data from the liver was analysed to identify DEGs and, subsequently, identify the molecular mechanisms, pathways and possible candidate biomarkers of feed efficiency. On average, 57 million reads (short reads or short mRNA sequences < ~200 bases) were sequenced, 52 million reads were mapped, and 24,616 known transcripts were quantified according to the bovine reference genome. A comparison of the high- and low-RFI groups revealed 70 and 19 significantly DEGs in Holstein and Jersey cows, respectively. The interaction analysis (high vs. low RFI x control vs. high concentrate diet) showed no interaction effects in the Holstein cows, while two genes showed interaction effects in the Jersey cows. The analyses showed that DEGs act through certain pathways to affect or regulate FE, including steroid hormone biosynthesis, retinol metabolism, starch and sucrose metabolism, ether lipid metabolism, arachidonic acid metabolism and drug metabolism cytochrome P450. CONCLUSION: We used RNA-Seq-based liver transcriptomic profiling of high- and low-RFI dairy cows in two breeds and identified significantly DEGs, their molecular mechanisms, their interactions with other genes and functional enrichments of different molecular pathways. The DEGs that were identified were the CYP’s and GIMAP genes for the Holstein and Jersey cows, respectively, which are related to the primary immunodeficiency pathway and play a major role in feed utilization and the metabolism of lipids, sugars and proteins. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-017-3622-9) contains supplementary material, which is available to authorized users

    Radionuclide imaging of spinal infections

    No full text
    Background: The diagnosis of spinal infection, with or without implants, has been a challenge for physicians for many years. Spinal infections are now being recognised more frequently, owing to aging of the population and the increasing use of spinal-fusion surgery. Discussion: The diagnosis in many cases is delayed, and this may result in permanent neurological damage or even death. Laboratory evidence of infection is variable. Conventional radiography and radionuclide bone imaging lack both sensitivity and specificity. Neither in vitro labelled leucocyte scintigraphy nor 99mTc-anti-granulocyte antibody scintigraphy is especially useful, because of the frequency with which spinal infection presents as a non-specific photopenic area on these tests. Sequential bone/gallium imaging and 67Ga-SPECT are currently the radionuclide procedures of choice for spinal osteomyelitis, but these tests lack specificity, suffer from poor spatial resolution and require several days to complete. [ 18F]Fluoro-2-deoxy-D-glucose (FDG) PET is a promising technique for diagnosing spinal infection, and has several potential advantages over conventional radionuclide tests. Results: The study is sensitive and is completed in a single session, and image quality is superior to that obtained with single-photon emitting tracers. The specificity of FDG-PET may also be superior to that of conventional tracers because degenerative bone disease and fractures usually do not produce intense FDG uptake; moreover, spinal implants do not affect FDG imaging. However, FDG-PET images have to be read with caution in patients with instrumented spinal-fusion surgery since non-specific accumulation of FDG around the fusion material is not uncommon. Conclusion: In the future, PET-CT will likely provide more precise localisation of abnormalities. FDG-PET may prove to be useful for monitoring response to treatment in patients with spinal osteomyelitis. Other tracers for diagnosing spinal osteomyelitis are also under investigation, including radiolabelled antibiotics, such as 99mTc-ciprofloxacin, and radiolabelled streptavidin-biotin complex. Antimicrobial peptides display preferential binding to microorganisms over human cells and perhaps new radiopharmaceuticals will be recruited from the array of human antimicrobial peptides/proteins. In experiments with Tc-ubiquicidin-derived peptides, radioactivity at the site of infection correlated well with the number of viable bacteria present. Finally, radiolabelled antifungal tracers could potentially distinguish fungal from bacterial infections. © 2006 Springer-Verlag.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore