13 research outputs found

    Room-temperature superfluidity in a polariton condensate

    No full text
    Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most striking manifestations of the collective behaviour typical of Bose–Einstein condensates1. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures2. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier–Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering

    A practical guide to bioelectrical impedance analysis using the example of chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Bioelectrical impedance analysis (BIA) is a simple, inexpensive, quick and non-invasive technique for measuring body composition. The clinical benefit of BIA can be further enhanced by combining it with bioelectrical impedance vector analysis (BIVA). However, there is a substantial lack of information on the practical aspects of BIA/BIVA for those primarily interested in learning how to use and interpret this method in practice. The purpose of this article is to provide some guidance on the use of BIA/BIVA with special attention to practical considerations.</p> <p>This report reflects the authors' practical experience with the use of single-frequency BIA in combination with BIVA, particularly in COPD patients. First, the method and principles of BIA/BIVA are briefly described. Then, a practice-oriented approach to the interpretation and analysis of characteristic examples of altered nutritional and fluid status as seen with BIA/BIVA in COPD patients (e.g. malnutrition in obese and underweight patients with COPD, water retention) is presented.</p> <p>As our examples show BIA/BIVA is an attractive and easy-to-learn tool for quick nutritional assessment and is therefore of great clinical benefit in daily practice.</p
    corecore