230 research outputs found

    Longer pregnancy and slower fetal development in women with latent "asymptomatic" toxoplasmosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to confirm that women with latent toxoplasmosis have developmentally younger fetuses at estimated pregnancy week 16 and to test four exclusive hypotheses that could explain the observed data.</p> <p>Methods</p> <p>In the present retrospective cohort study we analysed by the GLM (general linear model) method data from 730 <it>Toxoplasma</it>-free and 185 <it>Toxoplasma</it>-infected pregnant women.</p> <p>Results</p> <p>At pregnancy week 16 estimated from the date of the last menstruation, the mothers with latent toxoplasmosis had developmentally younger fetuses based on ultrasound scan (<it>P </it>= 0.014). Pregnancy of <it>Toxoplasma</it>-positive compared to <it>Toxoplasma</it>-negative women was by about 1.3 days longer, as estimated both from the date of the last menstruation (<it>P </it>= 0.015) and by ultrasonography (<it>P </it>= 0.025).</p> <p>Conclusion</p> <p>The most parsimonious explanation for the observed data is retarded fetal growth during the first weeks of pregnancy in <it>Toxoplasma</it>-positive women. The phenomenon was only detectable in multiparous women, suggesting that the immune system may play some role in it.</p

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru

    Get PDF
    Background: New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. Methods: We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Results: Forty-three participants enrolled in the course - 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P less than 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1-5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Conclusion: Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success.The University of Washington AMAUTA Global Training in Health Informatics, a Fogarty International Center/NIH funded grant (5D43TW007551), and the AMAUTA Research Practica Program, a Puget Sound Partners for Global Health-funded grant

    Childhood leukaemia: long-term excess mortality and the proportion ‘cured'

    Get PDF
    Survival from childhood leukaemia has increased, but the proportion of children cured is unknown. The proportion ‘cured' is defined as the proportion of survivors for whom, as a group, there is no longer excess mortality compared to the general population. Average time to cure is defined as the time since diagnosis at which the excess mortality rate has declined to or below a predetermined small value. Data on children diagnosed with leukaemia during 1971–2000 in Great Britain were used to estimate trends in survival, the proportion cured and the average time to cure. Five-year survival for all types of leukaemia combined rose from 33 to 79% by 2000. The percentage cured rose from 25 to 68% by 1995; it is predicted to increase to 73% for those diagnosed more recently. Average time to cure increased from 12 years (95% confidence interval (CI): 11–14) to 19 years (95% CI: 14–26) for lymphoid leukaemia (average annual increase of 0.3 years; P<0.001), but remained at about 5 years for acute nonlymphoblastic leukaemia. The proportion of children cured of leukaemia has risen dramatically, but the period of excess mortality associated with lymphoid leukaemia has also increased, possibly because of late relapse, secondary malignancy and toxicity from treatment

    Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    Get PDF
    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios

    Resource distributions affect social learning on multiple timescales

    Get PDF
    We study how learning is shaped by foraging opportunities and self-organizing processes and how this impacts on the effects of “copying what neighbors eat” on multiple timescales. We use an individual-based model with a rich environment, where group foragers learn what to eat. We vary foraging opportunities by changing local variation in resources, studying copying in environments with pure patches, varied patches, and uniform distributed resources. We find that copying can help individuals explore the environment by sharing information, but this depends on how foraging opportunities shape the learning process. Copying has the greatest impact in varied patches, where local resource variation makes learning difficult, but local resource abundance makes copying easy. In contrast, copying is redundant or excessive in pure patches where learning is easy, and mostly ineffective in uniform environments where learning is difficult. Our results reveal that the mediation of copying behavior by individual experience is crucial for the impact of copying. Moreover, we find that the dynamics of social learning at short timescales shapes cultural phenomena. In fact, the integration of learning on short and long timescales generates cumulative cultural improvement in diet. Our results therefore provide insight into how and when such processes can arise. These insights need to be taken into account when considering behavioral patterns in nature

    Development and Experimental Validation of a 20K Atlantic Cod (Gadus morhua) Oligonucleotide Microarray Based on a Collection of over 150,000 ESTs

    Get PDF
    The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research

    Amino Acid Availability Controls TRB3 Transcription in Liver through the GCN2/eIF2α/ATF4 Pathway

    Get PDF
    In mammals, plasma amino acid concentrations are markedly affected by dietary or pathological conditions. It has been well established that amino acids are involved in the control of gene expression. Up to now, all the information concerning the molecular mechanisms involved in the regulation of gene transcription by amino acid availability has been obtained in cultured cell lines. The present study aims to investigate the mechanisms involved in transcriptional activation of the TRB3 gene following amino acid limitation in mice liver. The results show that TRB3 is up-regulated in the liver of mice fed a leucine-deficient diet and that this induction is quickly reversible. Using transient transfection and chromatin immunoprecipitation approaches in hepatoma cells, we report the characterization of a functional Amino Acid Response Element (AARE) in the TRB3 promoter and the binding of ATF4, ATF2 and C/EBPβ to this AARE sequence. We also provide evidence that only the binding of ATF4 to the AARE plays a crucial role in the amino acid-regulated transcription of TRB3. In mouse liver, we demonstrate that the GCN2/eIF2α/ATF4 pathway is essential for the induction of the TRB3 gene transcription in response to a leucine-deficient diet. Therefore, this work establishes for the first time that the molecular mechanisms involved in the regulation of gene transcription by amino acid availability are functional in mouse liver
    corecore