4,487 research outputs found

    The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata

    Get PDF
    © The Author(s). 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Insulators and imprinting from flies to mammals

    Get PDF
    The nuclear factor CTCF has been shown to be necessary for the maintenance of genetic imprinting at the mammalian H19/Igf2 locus. MacDonald and colleagues now report in BMC Biology that the mechanisms responsible for maintaining the imprinted state in Drosophila may be evolutionarily conserved and that CTCF may also play a critical role in this process

    Evidence for dark matter in the inner Milky Way

    Full text link
    The ubiquitous presence of dark matter in the universe is today a central tenet in modern cosmology and astrophysics. Ranging from the smallest galaxies to the observable universe, the evidence for dark matter is compelling in dwarfs, spiral galaxies, galaxy clusters as well as at cosmological scales. However, it has been historically difficult to pin down the dark matter contribution to the total mass density in the Milky Way, particularly in the innermost regions of the Galaxy and in the solar neighbourhood. Here we present an up-to-date compilation of Milky Way rotation curve measurements, and compare it with state-of-the-art baryonic mass distribution models. We show that current data strongly disfavour baryons as the sole contribution to the galactic mass budget, even inside the solar circle. Our findings demonstrate the existence of dark matter in the inner Galaxy while making no assumptions on its distribution. We anticipate that this result will compel new model-independent constraints on the dark matter local density and profile, thus reducing uncertainties on direct and indirect dark matter searches, and will shed new light on the structure and evolution of the Galaxy.Comment: First submitted version of letter published in Nature Physics on Febuary 9, 2015: http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3237.htm

    Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection.

    Get PDF
    Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses

    A framework for protein structure classification and identification of novel protein structures

    Get PDF
    BACKGROUND: Protein structure classification plays a central role in understanding the function of a protein molecule with respect to all known proteins in a structure database. With the rapid increase in the number of new protein structures, the need for automated and accurate methods for protein classification is increasingly important. RESULTS: In this paper we present a unified framework for protein structure classification and identification of novel protein structures. The framework consists of a set of components for comparing, classifying, and clustering protein structures. These components allow us to accurately classify proteins into known folds, to detect new protein folds, and to provide a way of clustering the new folds. In our evaluation with SCOP 1.69, our method correctly classifies 86.0%, 87.7%, and 90.5% of new domains at family, superfamily, and fold levels. Furthermore, for protein domains that belong to new domain families, our method is able to produce clusters that closely correspond to the new families in SCOP 1.69. As a result, our method can also be used to suggest new classification groups that contain novel folds. CONCLUSION: We have developed a method called proCC for automatically classifying and clustering domains. The method is effective in classifying new domains and suggesting new domain families, and it is also very efficient. A web site offering access to proCC is freely available a

    Fetal lung underdevelopment is rescued by administration of amniotic fluid stem cell extracellular vesicles in rodents

    Get PDF
    Fetal lung underdevelopment, also known as pulmonary hypoplasia, is characterized by decreased lung growth and maturation. The most common birth defect found in babies with pulmonary hypoplasia is congenital diaphragmatic hernia (CDH). Despite research and clinical advances, babies with CDH still have high morbidity and mortality rates, which are directly related to the severity of lung underdevelopment. To date, there is no effective treatment that promotes fetal lung growth and maturation. Here, we describe a stem cell–based approach in rodents that enhances fetal lung development via the administration of extracellular vesicles (EVs) derived from amniotic fluid stem cells (AFSCs). Using fetal rodent models of pulmonary hypoplasia (primary epithelial cells, organoids, explants, and in vivo), we demonstrated that AFSC-EV administration promoted branching morphogenesis and alveolarization, rescued tissue homeostasis, and stimulated epithelial cell and fibroblast differentiation. We confirmed this regenerative ability in in vitro models of lung injury using human material, where human AFSC-EVs obtained following good manufacturing practices restored pulmonary epithelial homeostasis. Investigating EV mechanism of action, we found that AFSC-EV beneficial effects were exerted via the release of RNA cargo. MicroRNAs regulating the expression of genes involved in lung development, such as the miR17–92 cluster and its paralogs, were highly enriched in AFSC-EVs and were increased in AFSC-EV–treated primary lung epithelial cells compared to untreated cells. Our findings suggest that AFSC-EVs hold regenerative ability for underdeveloped fetal lungs, demonstrating potential for therapeutic application in patients with pulmonary hypoplasia

    Monolithically multi-color lasing from an InGaN microdisk on a Si substrate

    Get PDF
    An optically pumped multi-color laser has been achieved using an InGaN/GaN based micro-disk with an undercut structure on a silicon substrate. The micro-disk laser has been fabricated by means of a combination of a cost-effective microsphere lithography technique and subsequent dry/wet etching processes. The microdisk laser is approximately 1 μm in diameter. The structure was designed in such a way that the vertical components of the whispering gallery (WG) modes formed can be effectively suppressed. Consequently, three clean lasing peaks at 442 nm, 493 nm and 522 nm have been achieved at room temperature by simply using a continuous-wave diode laser as an optical pumping source. Time–resolved micro photoluminescence (PL) measurements have been performed in order to further confirm the lasing by investigating the excitonic recombination dynamics of these lasing peaks. A three dimensional finite-difference-time-domain (FDTD) simulation has been used for the structure design

    Efficiency of Spermatogonial Dedifferentiation during Aging

    Get PDF
    Adult stem cells are critical for tissue homeostasis; therefore, the mechanisms utilized to maintain an adequate stem cell pool are important for the survival of an individual. In Drosophila, one mechanism utilized to replace lost germline stem cells (GSCs) is dedifferentiation of early progenitor cells. However, the average number of male GSCs decreases with age, suggesting that stem cell replacement may become compromised in older flies.Using a temperature sensitive allelic combination of Stat92E to control dedifferentiation, we found that germline dedifferentiation is remarkably efficient in older males; somatic cells are also effectively replaced. Surprisingly, although the number of somatic cyst cells also declines with age, the proliferation rate of early somatic cells, including cyst stem cells (CySCs) increases.These data indicate that defects in spermatogonial dedifferentiation are not likely to contribute significantly to an aging-related decline in GSCs. In addition, our findings highlight differences in the ways GSCs and CySCs age. Strategies to initiate or enhance the ability of endogenous, differentiating progenitor cells to replace lost stem cells could provide a powerful and novel strategy for maintaining tissue homeostasis and an alternative to tissue replacement therapy in older individuals

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    A stem-group cnidarian described from the mid-Cambrian of China and its significance for cnidarian evolution

    Get PDF
    Palaeontological data of extinct groups often sheds light on the evolutionary sequences leading to extant groups, but has failed to resolve the basal metazoan phylogeny including the origin of the Cnidaria. Here we report the occurrence of a stem-group cnidarian, Cambroctoconus orientalis gen. et sp. nov., from the mid-Cambrian of China, which is a colonial organism with calcareous octagonal conical cup-shaped skeletons. It bears cnidarian features including longitudinal septa arranged in octoradial symmetry and colonial occurrence, but lacks a jelly-like mesenchyme. Such morphological characteristics suggest that the colonial occurrence with polyps of octoradial symmetry is the plesiomorphic condition of the Cnidaria and appeared earlier than the jelly-like mesenchyme during the course of evolution
    corecore