231 research outputs found

    Commentary on strategies for switching antipsychotics

    Get PDF
    Both the new generation of antipsychotics and the more traditional antipsychotic drugs produce an important and meaningful improvement in patients with schizophrenia, but most patients are neither cured nor free of symptoms. As a consequence, it is common to switch from one drug to another in the hope of obtaining a better response. All antipsychotic drugs produce some side effects, so switching can also be a tolerance issue. There are reports in the literature on the tactics of switching: abrupt discontinuation, cross tapering, starting a patient on a new drug while continuing with the old drug until the new drug has reached a steady state, or some variation on these tactics. In this issue, Ganguli et al. have carried out a randomized switching study, the data from which indicates the tactics that might be optimal. We put this paper into context, provide a critique and describe indications for switching

    Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV

    Full text link
    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV, corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed events are consistent with the expectations from Standard Model background processes. A lower limit of 65.5 GeV on the charged Higgs mass is derived at 95 % confidence level, independent of the decay branching ratio Br(H^{+/-} -> tau nu)

    Search for the standard model Higgs boson at LEP

    Get PDF

    Ecological expected utility and the mythical neural code

    Get PDF
    Neural spikes are an evolutionarily ancient innovation that remains nature’s unique mechanism for rapid, long distance information transfer. It is now known that neural spikes sub serve a wide variety of functions and essentially all of the basic questions about the communication role of spikes have been answered. Current efforts focus on the neural communication of probabilities and utility values involved in decision making. Significant progress is being made, but many framing issues remain. One basic problem is that the metaphor of a neural code suggests a communication network rather than a recurrent computational system like the real brain. We propose studying the various manifestations of neural spike signaling as adaptations that optimize a utility function called ecological expected utility

    Uneven focal shoe deterioration in Tourette syndrome.

    Get PDF
    A 31-year-old single man (AB) sought neuropsychiatric consultation for treatment-resistant motor and vocal tics. He described himself expressing a total of 24 different tics, mainly facial twitches (eye blinking, raising eyebrows, mouth opening, lips licking, stereotyped grimacing) and inappropriate utterances (grunting, throat clearing, sniffing), since the age of 7. There appeared to be no family history of tic disorder. He reported occasional utterance of swear words in contextually inappropriate situations (coprolalia), and the urge to copy other people’s movements (echopraxia). Other tic-associated symptoms included self-injurious behaviours and forced touching of objects. A.B. met both DSM-IV-tr and ICD-10 criteria for Tourette syndrome, and also DSM-IV-tr criteria for attention deficit hyperactivity disorder (combined type) in childhood

    Functional identification of biological neural networks using reservoir adaptation for point processes

    Get PDF
    The complexity of biological neural networks does not allow to directly relate their biophysical properties to the dynamics of their electrical activity. We present a reservoir computing approach for functionally identifying a biological neural network, i.e. for building an artificial system that is functionally equivalent to the reference biological network. Employing feed-forward and recurrent networks with fading memory, i.e. reservoirs, we propose a point process based learning algorithm to train the internal parameters of the reservoir and the connectivity between the reservoir and the memoryless readout neurons. Specifically, the model is an Echo State Network (ESN) with leaky integrator neurons, whose individual leakage time constants are also adapted. The proposed ESN algorithm learns a predictive model of stimulus-response relations in in vitro and simulated networks, i.e. it models their response dynamics. Receiver Operating Characteristic (ROC) curve analysis indicates that these ESNs can imitate the response signal of a reference biological network. Reservoir adaptation improved the performance of an ESN over readout-only training methods in many cases. This also held for adaptive feed-forward reservoirs, which had no recurrent dynamics. We demonstrate the predictive power of these ESNs on various tasks with cultured and simulated biological neural networks
    corecore