41 research outputs found

    Uneven spread of cis- and trans-editing aminoacyl-tRNA synthetase domains within translational compartments of P. falciparum

    Get PDF
    Accuracy of aminoacylation is dependent on maintaining fidelity during attachment of amino acids to cognate tRNAs. Cis- and trans-editing protein factors impose quality control during protein translation, and 8 of 36 Plasmodium falciparum aminoacyl-tRNA synthetase (aaRS) assemblies contain canonical putative editing modules. Based on expression and localization profiles of these 8 aaRSs, we propose an asymmetric distribution between the parasite cytoplasm and its apicoplast of putative editing-domain containing aaRSs. We also show that the single copy alanyl- and threonyl-tRNA synthetases are dually targeted to parasite cytoplasm and apicoplast. This bipolar presence of two unique synthetases presents opportunity for inhibitor targeting their aminoacylation and editing activities in twin parasite compartments. We used this approach to identify specific inhibitors against the alanyl- and threonyl-tRNA synthetases. Further development of such inhibitors may lead to anti-parasitics which simultaneously block protein translation in two key parasite organelles, a strategy of wider applicability for pathogen control

    Post-transfer editing mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea

    No full text
    To ensure a high fidelity during translation, threonyl-tRNA synthetases (ThrRSs) harbor an editing domain that removes noncognate L-serine attached to tRNA(Thr). Most archaeal ThrRSs possess a unique editing domain structurally similar to D-aminoacyl-tRNA deacylases (DTDs) found in eubacteria and eukaryotes that specifically removes D-amino acids attached to tRNA. Here, we provide mechanistic insights into the removal of noncognate L-serine from tRNA(Thr) by a DTD-like editing module from Pyrococcus abyssi ThrRS (Pab-NTD). High-resolution crystal structures of Pab-NTD with pre- and post-transfer substrate analogs and with L-serine show mutually nonoverlapping binding sites for the seryl moiety. Although the pre-transfer editing is excluded, the analysis reveals the importance of main chain atoms in proper positioning of the post-transfer substrate for its hydrolysis. A single residue has been shown to play a pivotal role in the inversion of enantioselectivity both in Pab-NTD and DTD. The study identifies an enantioselectivity checkpoint that filters opposite chiral molecules and thus provides a fascinating example of how nature has subtly engineered this domain for the selection of chiral molecules during translation

    Ambulation after Deep Vein Thrombosis: A Systematic Review

    No full text
    Purpose: To systematically review the effects of early ambulation on development of pulmonary embolism (PE) and progression or development of a new thrombus in patients with acute deep vein thrombosis (DVT)
    corecore