22 research outputs found
Exceptional collections and D-branes probing toric singularities
We demonstrate that a strongly exceptional collection on a singular toric
surface can be used to derive the gauge theory on a stack of D3-branes probing
the Calabi-Yau singularity caused by the surface shrinking to zero size. A
strongly exceptional collection, i.e., an ordered set of sheaves satisfying
special mapping properties, gives a convenient basis of D-branes. We find such
collections and analyze the gauge theories for weighted projective spaces, and
many of the Y^{p,q} and L^{p,q,r} spaces. In particular, we prove the strong
exceptionality for all p in the Y^{p,p-1} case, and similarly for the
Y^{p,p-2r} case.Comment: 49 pages, 6 figures; v2 refs added; v3 published versio
The Quantum McKay Correspondence for polyhedral singularities
Let G be a polyhedral group, namely a finite subgroup of SO(3). Nakamura's
G-Hilbert scheme provides a preferred Calabi-Yau resolution Y of the polyhedral
singularity C^3/G. The classical McKay correspondence describes the classical
geometry of Y in terms of the representation theory of G. In this paper we
describe the quantum geometry of Y in terms of R, an ADE root system associated
to G. Namely, we give an explicit formula for the Gromov-Witten partition
function of Y as a product over the positive roots of R. In terms of counts of
BPS states (Gopakumar-Vafa invariants), our result can be stated as a
correspondence: each positive root of R corresponds to one half of a genus zero
BPS state. As an application, we use the crepant resolution conjecture to
provide a full prediction for the orbifold Gromov-Witten invariants of [C^3/G].Comment: Introduction rewritten. Issue regarding non-uniqueness of conifold
resolution clarified. Version to appear in Inventione