192 research outputs found
Bosons in anisotropic traps: ground state and vortices
We solve the Gross-Pitaevskii equations for a dilute atomic gas in a magnetic
trap, modeled by an anisotropic harmonic potential. We evaluate the wave
function and the energy of the Bose Einstein condensate as a function of the
particle number, both for positive and negative scattering length. The results
for the transverse and vertical size of the cloud of atoms, as well as for the
kinetic and potential energy per particle, are compared with the predictions of
approximated models. We also compare the aspect ratio of the velocity
distribution with first experimental estimates available for Rb. Vortex
states are considered and the critical angular velocity for production of
vortices is calculated. We show that the presence of vortices significantly
increases the stability of the condensate in the case of attractive
interactions.Comment: 22 pages, REVTEX, 8 figures available upon request or at
http://anubis.science.unitn.it/~dalfovo/papers/papers.htm
Antigiardial activity of novel guanidine compounds
From four focused compound libraries based on the known anticoccidial agent robenidine, 44 compounds total were synthesised and screened for antigiardial activity. All active compounds were counter-screened for antibiotic and cytotoxic action. Of the analogues examined, 21 displayed IC50<5 μM, seven with IC50<1.0 μM. Most active were 2,2′-bis{[4-(trifluoromethoxy)phenyl]methylene}carbonimidic dihydrazide hydrochloride (30), 2,2′-bis{[4-(trifluoromethylsulfanyl)phenyl]methylene}carbonimidic dihydrazide hydrochloride (32), and 2,2′-bis[(2-bromo-4,5-dimethoxyphenyl)methylene]carbonimidic dihydrazide hydrochloride (41) with IC50=0.2 μM. The maximal observed activity was a 5 h IC50 value of 0.2 μM for 41. The clinically used metronidazole was inactive at this timepoint at a concentration of 25 μM. Robenidine off-target effects at bacteria and cell line toxicity were removed. Analogue 41 was well tolerated in mice treated orally (100 mg/kg). Following 5 h treatment with 41, no Giardia regrowth was noted after 48 h
Stability of Bose condensed atomic Li-7
We study the stability of a Bose condensate of atomic Li in a (harmonic
oscillator) magnetic trap at non-zero temperatures. In analogy to the stability
criterion for a neutron star, we conjecture that the gas becomes unstable if
the free energy as a function of the central density of the cloud has a local
extremum which conserves the number of particles. Moreover, we show that the
number of condensate particles at the point of instability decreases with
increasing temperature, and that for the temperature interval considered, the
normal part of the gas is stable against density fluctuations at this point.Comment: Submitted for publication in Physical Review
Low energy collective excitations in a superfluid trapped Fermi gas
We study low energy collective excitations in a trapped superfluid Fermi gas,
that describe slow variations of the phase of the superfluid order parameter.
Well below the critical temperature the corresponding eigenfrequencies turn out
to be of the order of the trap frequency, and these modes manifest themselves
as the eigenmodes of the density fluctuations of the gas sample. The latter
could provide an experimental evidence of the presence of the superfluid phase.Comment: 5 pages, REVTeX, referencies correcte
Resonance Superfluidity: Renormalization of Resonance Scattering Theory
We derive a theory of superfluidity for a dilute Fermi gas that is valid when
scattering resonances are present. The treatment of a resonance in many-body
atomic physics requires a novel mean-field approach starting from an
unconventional microscopic Hamiltonian. The mean-field equations incorporate
the microscopic scattering physics, and the solutions to these equations
reproduce the energy-dependent scattering properties. This theory describes the
high- behavior of the system, and predicts a value of which is a
significant fraction of the Fermi temperature. It is shown that this novel
mean-field approach does not break down for typical experimental circumstances,
even at detunings close to resonance. As an example of the application of our
theory we investigate the feasibility for achieving superfluidity in an
ultracold gas of fermionic Li.Comment: 15 pages, 10 figure
Scarred Patterns in Surface Waves
Surface wave patterns are investigated experimentally in a system geometry
that has become a paradigm of quantum chaos: the stadium billiard. Linear waves
in bounded geometries for which classical ray trajectories are chaotic are
known to give rise to scarred patterns. Here, we utilize parametrically forced
surface waves (Faraday waves), which become progressively nonlinear beyond the
wave instability threshold, to investigate the subtle interplay between
boundaries and nonlinearity. Only a subset (three main types) of the computed
linear modes of the stadium are observed in a systematic scan. These correspond
to modes in which the wave amplitudes are strongly enhanced along paths
corresponding to certain periodic ray orbits. Many other modes are found to be
suppressed, in general agreement with a prediction by Agam and Altshuler based
on boundary dissipation and the Lyapunov exponent of the associated orbit.
Spatially asymmetric or disordered (but time-independent) patterns are also
found even near onset. As the driving acceleration is increased, the
time-independent scarred patterns persist, but in some cases transitions
between modes are noted. The onset of spatiotemporal chaos at higher forcing
amplitude often involves a nonperiodic oscillation between spatially ordered
and disordered states. We characterize this phenomenon using the concept of
pattern entropy. The rate of change of the patterns is found to be reduced as
the state passes temporarily near the ordered configurations of lower entropy.
We also report complex but highly symmetric (time-independent) patterns far
above onset in the regime that is normally chaotic.Comment: 9 pages, 10 figures (low resolution gif files). Updated and added
references and text. For high resolution images:
http://physics.clarku.edu/~akudrolli/stadium.htm
Simultaneous Magneto-Optical Trapping of Two Lithium Isotopes
We confine 4 10^8 fermionic 6Li atoms simultaneously with 9 10^9 bosonic 7Li
atoms in a magneto-optical trap based on an all-semiconductor laser system. We
optimize the two-isotope sample for sympathetic evaporative cooling. This is an
essential step towards the production of a quantum-degenerate gas of fermionic
lithium atoms.Comment: 4 pages, 3 figure
Inflation and the Scale Dependent Spectral Index: Prospects and Strategies
We consider the running of the spectral index as a probe of both inflation
itself, and of the overall evolution of the very early universe. Surveying a
collection of simple single field inflationary models, we confirm that the
magnitude of the running is relatively consistent, unlike the tensor amplitude,
which varies by orders of magnitude. Given this target, we confirm that the
running is potentially detectable by future large scale structure or 21 cm
observations, but that only the most futuristic measurements can distinguish
between these models on the basis of their running. For any specified
inflationary scenario, the combination of the running index and unknown
post-inflationary expansion history induces a theoretical uncertainty in the
predicted value of the spectral index. This effect can easily dominate the
statistical uncertainty with which Planck and its successors are expected to
measure the spectral index. More positively, upcoming cosmological experiments
thus provide an intriguing probe of physics between TeV and GUT scales by
constraining the reheating history associated with any specified inflationary
model, opening a window into the "primordial dark age" that follows the end of
inflation.Comment: 32 pages. v2 and v3 Minor reference updates /clarification
Measurement of Pressure Dependent Fluorescence Yield of Air: Calibration Factor for UHECR Detectors
In a test experiment at the Final Focus Test Beam of the Stanford Linear
Accelerator Center, the fluorescence yield of 28.5 GeV electrons in air and
nitrogen was measured. The measured photon yields between 300 and 400 nm at 1
atm and 29 deg C are Y(760 Torr, air) = 4.42 +/- 0.73 and Y(760 Torr, nitrogen)
= 29.2 +/- 4.8 photons per electron per meter. Assuming that the fluorescence
yield is proportional to the energy deposition of a charged particle traveling
through air, good agreement with measurements at lower particle energies is
observed.Comment: 22 pages, 14 figures, 2 tables, submitted to Astroparticle Physic
- …