47 research outputs found

    Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity

    Get PDF
    Dihydropyrimidine dehydrogenase (DPD) is the initial enzyme acting in the catabolism of the widely used antineoplastic agent 5-fluorouracil (5FU). DPD deficiency is known to cause a potentially lethal toxicity following administration of 5FU. Here, we report novel genetic mechanisms underlying DPD deficiency in patients presenting with grade III/IV 5FU-associated toxicity. In one patient a genomic DPYD deletion of exons 21–23 was observed. In five patients a deep intronic mutation c.1129–5923C>G was identified creating a cryptic splice donor site. As a consequence, a 44 bp fragment corresponding to nucleotides c.1129–5967 to c.1129–5924 of intron 10 was inserted in the mature DPD mRNA. The deleterious c.1129–5923C>G mutation proved to be in cis with three intronic polymorphisms (c.483 + 18G>A, c.959–51T>G, c.680 + 139G>A) and the synonymous mutation c.1236G>A of a previously identified haplotype. Retrospective analysis of 203 cancer patients showed that the c.1129–5923C>G mutation was significantly enriched in patients with severe 5FU-associated toxicity (9.1%) compared to patients without toxicity (2.2%). In addition, a high prevalence was observed for the c.1129–5923C>G mutation in the normal Dutch (2.6%) and German (3.3%) population. Our study demonstrates that a genomic deletion affecting DPYD and a deep intronic mutation affecting pre-mRNA splicing can cause severe 5FU-associated toxicity. We conclude that screening for DPD deficiency should include a search for genomic rearrangements and aberrant splicing

    Reduced 5-FU clearance in a patient with low DPD activity due to heterozygosity for a mutant allele of the DPYD gene

    Get PDF
    5-fluorouracil pharmacokinetics, dihydropyrimidine dehydrogenase-activity and DNA sequence analysis were compared between a patient with extreme 5-fluorouracil induced toxicity and six control patients with normal 5-fluorouracil related symptoms. Patients were treated for colorectal cancer and received chemotherapy consisting of leucovorin 20 mg m−2 plus 5-fluorouracil 425 mg m−2. Blood sampling was carried out on day 1 of the first cycle. The 5-fluorouracil area under the curve0→3h in the index patient was 24.1 mg h l−1 compared to 9.8±3.6 (range 5.4–15.3) mg h l−1 in control patients. The 5-fluorouracil clearance was 520 ml min−1 vs 1293±302 (range 980–1780) ml min−1 in controls. The activity of dihydropyrimidine dehydrogenase in mononuclear cells was lower in the index patient (5.5 nmol mg h−1) compared to the six controls (10.3±1.6, range 8.0–11.7 nmol mg h−1). Sequence analysis of the dihydropyrimidine dehydrogenase gene revealed that the index patient was heterozygous for a IVS14+1G>A point mutation. Our results indicate that the inactivation of one dihydropyrimidine dehydrogenase allele can result in a strong reduction in 5-fluorouracil clearance, causing severe 5-fluorouracil induced toxicity

    Profound variation in dihydropyrimidine dehydrogenase activity in human blood cells: major implications for the detection of partly deficient patients

    Get PDF
    Dihydropyrimidine dehydrogenase (DPD) is responsible for the breakdown of the widely used antineoplastic agent 5-fluorouracil (5FU), thereby limiting the efficacy of the therapy. To identify patients suffering from a complete or partial DPD deficiency, the activity of DPD is usually determined in peripheral blood mononuclear cells (PBM cells). In this study, we demonstrated that the highest activity of DPD was found in monocytes followed by that of lymphocytes, granulocytes and platelets, whereas no significant activity of DPD could be detected in erythrocytes. The activity of DPD in PBM cells proved to be intermediate compared with the DPD activity observed in monocytes and lymphocytes. The mean percentage of monocytes in the PBM cells obtained from cancer patients proved to be significantly higher than that observed in PBM cells obtained from healthy volunteers. Moreover, a profound positive correlation was observed between the DPD activity of PBM cells and the percentage of monocytes, thus introducing a large inter- and intrapatient variability in the activity of DPD and hindering the detection of patients with a partial DPD deficiency. © 1999 Cancer Research Campaig

    Strong Association of a Common Dihydropyrimidine Dehydrogenase Gene Polymorphism with Fluoropyrimidine-Related Toxicity in Cancer Patients

    Get PDF
    variations associated with enhanced drug toxicity. = 0.001; the attributable risk was 56.9%. Comparing tumor-type matched sets of samples, correlation of c.496A>G with toxicity was particularly present in patients with gastroesophageal and breast cancer, but did not reach significance in patients with colorectal malignancies. polymorphism strongly contributes to the occurrence of fluoropyrimidine-related drug adverse effects. Carriers of this variant could benefit from individual dose adjustment of the fluoropyrimidine drug or alternate therapies

    Retrospective study of long-term outcomes of enzyme replacement therapy in Fabry disease: Analysis of prognostic factors

    Get PDF
    Despite enzyme replacement therapy, disease progression is observed in patients with Fabry disease. Identification of factors that predict disease progression is needed to refine guidelines on initiation and cessation of enzyme replacement therapy. To study the association of potential biochemical and clinical prognostic factors with the disease course (clinical events, progression of cardiac and renal disease) we retrospectively evaluated 293 treated patients from three international centers of excellence. As expected, age, sex and phenotype were important predictors of event rate. Clinical events before enzyme replacement therapy, cardiac mass and eGFR at baseline predicted an increased event rate. eGFR was the most important predictor: hazard ratios increased from 2 at eGFR 90. In addition, men with classical disease and a baseline eGFR 60. Proteinuria was a further independent risk factor for decline in eGFR. Increased cardiac mass at baseline was associated with the most robust decrease in cardiac mass during treatment, while presence of cardiac fibrosis predicted a stronger increase in cardiac mass (3.36 gram/m2/year). Of other cardiovascular risk factors, hypertension significantly predicted the risk for clinical events. In conclusion, besides increasing age, male sex and classical phenotype, faster disease progression while on enzyme replacement therapy is predicted by renal function, proteinuria and to a lesser extent cardiac fibrosis and hypertension

    Predicting the Development of Anti-Drug Antibodies against Recombinant alpha-Galactosidase A in Male Patients with Classical Fabry Disease

    Get PDF
    Fabry Disease (FD) is a rare, X-linked, lysosomal storage disease that mainly causes renal, cardiac and cerebral complications. Enzyme replacement therapy (ERT) with recombinant alpha-galactosidase A is available, but approximately 50% of male patients with classical FD develop inhibiting anti-drug antibodies (iADAs) that lead to reduced biochemical responses and an accelerated loss of renal function. Once immunization has occurred, iADAs tend to persist and tolerization is hard to achieve. Here we developed a pre-treatment prediction model for iADA development in FD using existing data from 120 classical male FD patients from three European centers, treated with ERT. We found that nonsense and frameshift mutations in the α-galactosidase A gene (p = 0.05), higher plasma lysoGb3 at baseline (p < 0.001) and agalsidase beta as first treatment (p = 0.006) were significantly associated with iADA development. Prediction performance of a Random Forest model, using multiple variables (AUC-ROC: 0.77) was compared to a logistic regression (LR) model using the three significantly associated variables (AUC-ROC: 0.77). The LR model can be used to determine iADA risk in individual FD patients prior to treatment initiation. This helps to determine in which patients adjusted treatment and/or immunomodulatory regimes may be considered to minimize iADA development risk. View Full-Tex

    Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: an international cohort study

    Get PDF
    BACKGROUND: Two recombinant enzymes (agalsidase alfa 0.2 mg/kg/every other week and agalsidase beta 1.0 mg/kg/every other week) have been registered for the treatment of Fabry disease (FD), at equal high costs. An independent international initiative compared clinical and biochemical outcomes of the two enzymes. METHODS: In this multicentre retrospective cohort study, clinical event rate, left ventricular mass index (LVMI), estimated glomerular filtration rate (eGFR), antibody formation and globotriaosylsphingosine (lysoGb3) levels were compared between patients with FD treated with agalsidase alfa and beta at their registered dose after correction for phenotype and sex. RESULTS: 387 patients (192 women) were included, 248 patients received agalsidase alfa. Mean age at start of enzyme replacement therapy was 46 (±15) years. Propensity score matched analysis revealed a similar event rate for both enzymes (HR 0.96, P=0.87). The decrease in plasma lysoGb3 was more robust following treatment with agalsidase beta, specifically in men with classical FD (β: -18 nmol/L, P<0.001), persisting in the presence of antibodies. The risk to develop antibodies was higher for patients treated with agalsidase beta (OR 2.8, P=0.04). LVMI decreased in a higher proportion following the first year of agalsidase beta treatment (OR 2.27, P=0.03), while eGFR slopes were similar. CONCLUSIONS: Treatment with agalsidase beta at higher dose compared with agalsidase alfa does not result in a difference in clinical events, which occurred especially in those with more advanced disease. A greater biochemical response, also in the presence of antibodies, and better reduction in left ventricular mass was observed with agalsidase beta

    Predictors of survival and toxicity in patients on adjuvant therapy with 5-fluorouracil for colorectal cancer

    Get PDF
    The present study aimed at investigating whether the simultaneous evaluation of pharmacokinetic, pharmacogenetic and demographic factors could improve prediction on toxicity and survival in colorectal cancer patients treated with adjuvant 5-fluorouracil (5FU)/leucovorin therapy. One hundred and thirty consecutive, B2 and C Duke's stage colorectal cancer patients were prospectively enrolled. 5FU pharmacokinetics was evaluated at the first cycle. Thymidylate synthase (TYMS) 5′UTR and 3′UTR polymorphisms and methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms were assessed in peripheral leukocytes. Univariate and multivariate analyses were applied to evaluate which variables could predict chemotherapy-induced toxicity, disease-free survival (DFS) and overall survival (OS). Multivariate analysis showed that: (a) low 5FU clearance was an independent predictive factor for severe toxicity (OR=7.32; P<0.0001); (b) high-5FU clearance predicted poorer DFS (HR=1.96; P=0.041) and OS (HR=3.37; P=0.011); (c) advanced age was associated with shorter DFS (HR=3.34; P=0.0008) and OS (HR=2.66; P=0.024); (d) the C/C genotype of the MTHFR C677T polymorphism was protective against grade 3–4 toxicity (P=0.040); (e) none of the TYMS polymorphisms could explain 5FU toxicity or clinical outcome
    corecore