1,594 research outputs found
PSR J2030+3641: radio discovery and gamma-ray study of a middle-aged pulsar in the now identified Fermi-LAT source 1FGL J2030.0+3641
In a radio search with the Green Bank Telescope of three unidentified low
Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar
J2030+3641, associated with 1FGL J2030.0+3641 (2FGL J2030.0+3640). Following
the detection of gamma-ray pulsations using a radio ephemeris, we have obtained
a phase-coherent timing solution based on gamma-ray and radio pulse arrival
times that spans the entire Fermi mission. With a rotation period of 0.2 s,
spin-down luminosity of 3e34 erg/s, and characteristic age of 0.5 Myr, PSR
J2030+3641 is a middle-aged neutron star with spin parameters similar to those
of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray
flux is 1% that of Geminga, primarily because of its much larger distance, as
suggested by the large integrated column density of free electrons, DM=246
pc/cc. We fit the gamma-ray light curve, along with limited radio polarimetric
constraints, to four geometrical models of magnetospheric emission, and while
none of the fits have high significance some are encouraging and suggest that
further refinements of these models may be worthwhile. We argue that not many
more non-millisecond radio pulsars may be detected along the Galactic plane
that are responsible for LAT sources, but that modified methods to search for
gamma-ray pulsations should be productive -- PSR J2030+3641 would have been
found blindly in gamma rays if only >0.8 GeV photons had been considered, owing
to its relatively flat spectrum and location in a region of high soft
background.Comment: Accepted for publication in ApJ, 9 pages, 6 figure
The bright unidentified gamma-ray source 1FGL J1227.9-4852: Can it be associated with an LMXB?
We present an analysis of high energy (HE; 0.1-300 GeV) gamma-ray
observations of 1FGL J1227.9-4852 with the Fermi Gamma-ray Space Telescope,
follow-up radio observations with the Australia Telescope Compact Array, Giant
Metrewave Radio Telescope and Parkes radio telescopes of the same field and
follow-up optical observations with the ESO VLT. We also examine archival
XMM-Newton and INTEGRAL X-ray observations of the region around this source.
The gamma-ray spectrum of 1FGL J1227.9-4852 is best fit with an exponentially
cutoff power-law, reminiscent of the population of pulsars observed by Fermi. A
previously unknown, compact radio source within the 99.7% error circle of 1FGL
J1227.9-4852 is discovered and has a morphology consistent either with an AGN
core/jet structure or with two roughly symmetric lobes of a distant radio
galaxy. A single bright X-ray source XSS J12270-4859, a low-mass X-ray binary,
also lies within the 1FGL J1227.9-4852 error circle and we report the first
detection of radio emission from this source. The potential association of 1FGL
J1227.9-4852 with each of these counterparts is discussed. Based upon the
available data we find the association of the gamma-ray source to the compact
double radio source unlikely and suggest that XSS J12270-4859 is a more likely
counterpart to the new HE source. We propose that XSS J12270-4859 may be a
millisecond binary pulsar and draw comparisons with PSR J1023+0038.Comment: Accepted for publication in MNRAS; 9 pages, 8 figures, 2 table
On leptonic models for blazars in the Fermi era
Some questions raised by Fermi-LAT data about blazars are summarized, along
with attempts at solutions within the context of leptonic models. These include
both spectral and statistical questions, including the origin of the GeV breaks
in low-synchrotron peaked blazars, the location of the gamma-ray emission
sites, the correlations in the spectral energy distributions with luminosity,
and the difficulty of synchrotron/SSC models to fit the spectra of some TeV
blazars.Comment: 9 pages, 1 figure, in "Beamed and Unbeamed Gamma Rays from Galaxies,"
Muonio, Finland, 11-15 April, 2011, ed. R. Wagner, L. Maraschi, A. Sillanpaa,
to appear in Journal of Physics: Conference Serie
Gamma-Ray Emission from Two Blazars Behind the Galactic Plane: B2013+370 & B2023+336
B2013+370 and B2023+336 are two blazars at low-galactic latitude that were
previously proposed to be the counterparts for the EGRET unidentified sources,
3EG J2016+3657 and 3EG J2027+3429. Gamma-ray emission associated with the EGRET
sources has been detected by the Fermi Gamma-ray Space Telescope, and the two
sources, 1FGL J2015.7+3708 and 1FGL J2027.6+3335, have been classified as
unidentified in the 1-year catalog. This analysis of the Fermi-LAT data
collected during 31 months reveals that the 1FGL sources are spatially
compatible with the blazars, and are significantly variable, supporting the
hypothesis of extragalactic origin for the gamma-ray emission. The gamma-ray
light curves are compared with 15 GHz radio light curves from the 40-m
telescope at the Owens Valley Radio Observatory (OVRO). Simultaneous
variability is seen in both bands for the two blazar candidates. The study is
completed with the X-ray analysis of 1FGL J2015.7+3708 using Swift observations
that were triggered in August 2010 by a Fermi-detected flare. The resulting
spectral energy distribution shows a two-component structure typical of
blazars. We also identify a second source in the field of view of 1FGL
J2027.6+3335 with similar characteristics to the known LAT pulsars. This study
gives solid evidence favoring blazar counterparts for these two unidentified
EGRET and Fermi sources, supporting the hypothesis that a number of
unidentified gamma-ray sources at low galactic latitudes are indeed of
extragalactic origin.Comment: 10 pages, 7 figures, 6 tables, accepted for publication in The
Astrophysical Journa
Eight gamma-ray pulsars discovered in blind frequency searches of Fermi LAT data
We report the discovery of eight gamma-ray pulsars in blind frequency
searches using the LAT, onboard the Fermi Gamma-ray Space Telescope. Five of
the eight pulsars are young (tau_c10^36 erg/s), and
located within the Galactic plane (|b|<3 deg). The remaining three are older,
less energetic, and located off the plane. Five pulsars are associated with
sources included in the LAT bright gamma-ray source list, but only one, PSR
J1413-6205, is clearly associated with an EGRET source. PSR J1023-5746 has the
smallest characteristic age (tau_c=4.6 kyr) and is the most energetic
(Edot=1.1E37 erg/s) of all gamma-ray pulsars discovered so far in blind
searches. PSRs J1957+5033 and J2055+25 have the largest characteristic ages
(tau_c~1 Myr) and are the least energetic (Edot~5E33 erg/s) of the
newly-discovered pulsars. We present the timing models, light curves, and
detailed spectral parameters of the new pulsars. We used recent XMM
observations to identify the counterpart of PSR J2055+25 as XMMU
J205549.4+253959. In addition, publicly available archival Chandra X-ray data
allowed us to identify the likely counterpart of PSR J1023-5746 as a faint,
highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption
indicates that this could be among the most distant gamma-ray pulsars detected
so far. PSR J1023-5746 is positionally coincident with the TeV source HESS
J1023-575, located near the young stellar cluster Westerlund 2, while PSR
J1954+2836 is coincident with a 4.3 sigma excess reported by Milagro at a
median energy of 35 TeV. Deep radio follow-up observations of the eight pulsars
resulted in no detections of pulsations and upper limits comparable to the
faintest known radio pulsars, indicating that these can be included among the
growing population of radio-quiet pulsars in our Galaxy being uncovered by the
LAT, and currently numbering more than 20.Comment: Submitted to Ap
Global e-VLBI observations of the gamma-ray narrow line Seyfert 1 PMN J0948+0022
There is growing evidence of relativistic jets in radio-loud narrow-line
Seyfert 1 (RL-NLS1) galaxies. We constrain the observational properties of the
radio emission in the first RL-NLS1 galaxy ever detected in gamma-rays, PMN
J0948+0022, i.e., its flux density and structure in total intensity and in
polarization, its compactness, and variability. We performed three real-time
e-VLBI observations of PMN J0948+0022 at 22 GHz, using a global array including
telescopes in Europe, East Asia, and Australia. These are the first e-VLBI
science observations ever carried out with a global array, reaching a maximum
baseline length of 12458 km. The observations were part of a large
multiwavelength campaign in 2009. The source is detected at all three epochs.
The structure is dominated by a bright component, more compact than 55
microarcsec, with a fainter component at a position angle theta~ 35deg.
Relativistic beaming is required by the observed brightness temperature of
3.4x10^11 K. Polarization is detected at a level of about 1%. The parameters
derived by the VLBI observations, in addition to the broad-band properties,
confirm that PMN J0948+0022 is similar to flat spectrum radio quasars. Global
e-VLBI is a reliable and promising technique for future studies.Comment: Accepted for publication as a Letter in Astronomy and Astrophysic
PSRs J0248+6021 and J2240+5832: Young Pulsars in the Northern Galactic Plane. Discovery, Timing, and Gamma-ray observations
Pulsars PSR J0248+6021 (rotation period P=217 ms and spin-down power Edot =
2.13E35 erg/s) and PSR J2240+5832 (P=140 ms, Edot = 2.12E35 erg/s) were
discovered in 1997 with the Nancay radio telescope during a northern Galactic
plane survey, using the Navy-Berkeley Pulsar Processor (NBPP) filter bank. GeV
gamma-ray pulsations from both were discovered using the Fermi Large Area
Telescope. Twelve years of radio and polarization data allow detailed
investigations. The two pulsars resemble each other both in radio and in
gamma-ray data. Both are rare in having a single gamma-ray pulse offset far
from the radio peak. The high dispersion measure for PSR J0248+6021 (DM = 370
pc cm^-3) is most likely due to its being within the dense, giant HII region W5
in the Perseus arm at a distance of 2 kpc, not beyond the edge of the Galaxy as
obtained from models of average electron distributions. Its high transverse
velocity and the low magnetic field along the line-of-sight favor this small
distance. Neither gamma-ray, X-ray, nor optical data yield evidence for a
pulsar wind nebula surrounding PSR J0248+6021. The gamma-ray luminosity for PSR
J0248+6021 is L_ gamma = (1.4 \pm 0.3)\times 10^34 erg/s. For PSR J2240+5832,
we find either L_gamma = (7.9 \pm 5.2) \times 10^34 erg/s if the pulsar is in
the Outer arm, or L_gamma = (2.2 \pm 1.7) \times 10^34 erg/s for the Perseus
arm. These luminosities are consistent with an L_gamma ~ sqrt(Edot) rule.
Comparison of the gamma-ray pulse profiles with model predictions, including
the constraints obtained from radio polarization data, favor emission in the
far magnetosphere. These two pulsars differ mainly in their inclination angles
and acceleration gap widths, which in turn explains the observed differences in
the gamma-ray peak widths.Comment: 13 pages, Accepted to Astronomy & Astrophysic
Simplified HPLC method for identification of gingerol and mangiferin in herbal extracts
Quantification of bioactive compounds through modern analytical techniques is essential for proving authenticity, credibility, and safe use of herbal products in Ayurvedic medicine. In this study, we describe the development of a simplified method for the identification of key bioactive compounds in six commercial herbal products of various forms using High Performance Liquid Chromatography (HPLC). Marker compounds such as mangiferin 1 and [6]-gingerol 2 were examined in various extracts of mango leaves and ginger, respectively. The compounds were extracted by sonication with methanol at room temperature and were analyzed by HPLC with 0.1% acetic acid buffer (pH = 3.00)/methanol mixture used as gradient mobile phase. Eluents were monitored by a photo diode array (PDA) detector and UV detection fixed at 280/320 nm. Further characterization of each extract was performed using FTIR and UV-Vis. Mangiferin 1 eluted at 6 min (320 nm) and gingerol 2 at 16.9 min (280 nm). The proposed method provides a good resolution of the selected marker compounds in herbal products and dietary supplements that could be further used for their quantification and standardization in routine analysis and quality control. © EuroJournals Publishing, Inc. 2011
Spectrum and Morphology of the Two Brightest Milagro Sources in the Cygnus Region: MGRO J2019+37 and MGRO J2031+41
The Cygnus region is a very bright and complex portion of the TeV sky, host
to unidentified sources and a diffuse excess with respect to conventional
cosmic-ray propagation models. Two of the brightest TeV sources, MGRO J2019+37
and MGRO J2031+41, are analyzed using Milagro data with a new technique, and
their emission is tested under two different spectral assumptions: a power law
and a power law with an exponential cutoff. The new analysis technique is based
on an energy estimator that uses the fraction of photomultiplier tubes in the
observatory that detect the extensive air shower. The photon spectrum is
measured in the range 1 to 200 TeV using the last 3 years of Milagro data
(2005-2008), with the detector in its final configuration. MGRO J2019+37 is
detected with a significance of 12.3 standard deviations (), and is
better fit by a power law with an exponential cutoff than by a simple power
law, with a probability % (F-test). The best-fitting parameters for the
power law with exponential cutoff model are a normalization at 10 TeV of
, a spectral
index of and a cutoff energy of TeV. MGRO
J2031+41 is detected with a significance of 7.3, with no evidence of a
cutoff. The best-fitting parameters for a power law are a normalization of
and a
spectral index of . The overall flux is subject to an
30% systematic uncertainty. The systematic uncertainty on the power law
indices is 0.1. A comparison with previous results from TeV J2032+4130,
MGRO J2031+41 and MGRO J2019+37 is also presented.Comment: 11 pages, 10 figure
Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: a case for Caustic Radio Emission?
We report the detection of pulsed gamma-ray emission from the fast
millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20
(J1959+2048) using 18 months of survey data recorded by the \emph{Fermi} Large
Area Telescope (LAT) and timing solutions based on radio observations conducted
at the Westerbork and Nan\c{c}ay radio telescopes. In addition, we analyzed
archival \emph{RXTE} and \emph{XMM-Newton} X-ray data for the two MSPs,
confirming the X-ray emission properties of PSR B1937+21 and finding evidence
() for pulsed emission from PSR B1957+20 for the first time. In
both cases the gamma-ray emission profile is characterized by two peaks
separated by half a rotation and are in close alignment with components
observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and
J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks
in different energy bands. The modeling of the radio and gamma-ray emission
profiles suggests co-located emission regions in the outer magnetosphere.Comment: Accepted for publication in the Astrophysical Journa
- …