21,907 research outputs found
Using the INSPIRAL program to search for gravitational waves from low-mass binary inspiral
The INSPIRAL program is the LIGO Scientific Collaboration's computational
engine for the search for gravitational waves from binary neutron stars and
sub-solar mass black holes. We describe how this program, which makes use of
the FINDCHIRP algorithm (discussed in a companion paper), is integrated into a
sophisticated data analysis pipeline that was used in the search for low-mass
binary inspirals in data taken during the second LIGO science run.Comment: 11 pages, 3 figures, submitted to Classical and Quantum Gravity for
the special issue of the GWDAW9 Proceeding
Guidance, flight mechanics and trajectory optimization. Volume 10 - Dynamic programming
Dynamic programming and multistage decision processes in guidance, flight mechanics, and trajectory optimizatio
Guidance, flight mechanics and trajectory optimization. Volume 1 - Coordinate systems and time measure
Coordinate measuring system for flight control, and trajectory optimizatio
Report on the first binary black hole inspiral search in LIGO data
The LIGO Scientific Collaboration is currently engaged in the first search
for binary black hole inspiral signals in real data. We are using the data from
the second LIGO science run and we focus on inspiral signals coming from binary
systems with component masses between 3 and 20 solar masses. We describe the
analysis methods used and report on preliminary estimates for the sensitivities
of the LIGO instruments during the second science run.Comment: 10 pages, 2 figures. Added references for section 2, corrected figure
1. To appear in CQG, in a special issue on the proceedings of the 9th Annual
Gravitational Wave Data Analysis Workshop (GWDAW), Annecy, France, Dec. 200
Sol-Gel Derived Ferroelectric Nanoparticles Investigated by Piezoresponse Force Microscopy
Piezoresponse force microscopy (PFM) was used to investigate the
ferroelectric properties of sol-gel derived LiNbO nanoparticles. To
determine the degree of ferroelectricity we took large-area images and
performed statistical image-analysis. The ferroelectric behavior of single
nanoparticles was verified by poling experiments using the PFM tip. Finally we
carried out simultaneous measurements of the in-plane and the out-of-plane
piezoresponse of the nanoparticles, followed by measurements of the same area
after rotation of the sample by 90 and 180. Such
measurements basically allow to determine the direction of polarization of
every single particle
Elastic Instability Triggered Pattern Formation
Recent experiments have exploited elastic instabilities in membranes to
create complex patterns. However, the rational design of such structures poses
many challenges, as they are products of nonlinear elastic behavior. We pose a
simple model for determining the orientational order of such patterns using
only linear elasticity theory which correctly predicts the outcomes of several
experiments. Each element of the pattern is modeled by a "dislocation dipole"
located at a point on a lattice, which then interacts elastically with all
other dipoles in the system. We explicitly consider a membrane with a square
lattice of circular holes under uniform compression and examine the changes in
morphology as it is allowed to relax in a specified direction.Comment: 15 pages, 7 figures, the full catastroph
Calibration Of The Advanced Ligo Detectors For The Discovery Of The Binary Black-Hole Merger Gw150914
In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector\u27s differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector\u27s gravitational-wave response. The gravitational-wave response model is determined by the detector\u27s opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 days of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10° in phase across the relevant frequency band, 20 Hz to 1 kHz
- …