28 research outputs found

    Managing Polyploidy in Ex Situ Conservation Genetics: The Case of the Critically Endangered Adriatic Sturgeon (Acipenser naccarii)

    Get PDF
    While the current expansion of conservation genetics enables to address more efficiently the management of threatened species, alternative methods for genetic relatedness data analysis in polyploid species are necessary. Within this framework, we present a standardized and simple protocol specifically designed for polyploid species that can facilitate management of genetic diversity, as exemplified by the ex situ conservation program for the tetraploid Adriatic sturgeon Acipenser naccarii. A critically endangered endemic species of the Adriatic Sea tributaries, its persistence is strictly linked to the ex situ conservation of a single captive broodstock currently decimated to about 25 individuals, which represents the last remaining population of Adriatic sturgeon of certain wild origin. The genetic variability of three F1 broodstocks available as future breeders was estimated based on mitochondrial and microsatellite information and compared with the variability of the parental generation. Genetic data showed that the F1 stocks have only retained part of the genetic variation present in the original stock due to the few parent pairs used as founders. This prompts for the urgent improvement of the current F1 stocks by incorporating new founders that better represent the genetic diversity available. Following parental allocation based on band sharing values, we set up a user-friendly tool for selection of candidate breeders according to relatedness between all possible parent-pairs that secures the use of non-related individuals. The approach developed here could also be applied to other endangered tetraploid sturgeon species overexploited for caviar production, particularly in regions lacking proper infrastructure and/or expertise

    Population genomics of marine zooplankton

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated species and diversity of genomic architecture, including highly-replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from local adaptation to environmental conditions and change.Support was provided by the US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to IS and MC was provided by Nord University (Norway)

    Genetic structure of the high dispersal Atlanto-Mediterreanean sea star Astropecten aranciacus revealed by mitochondrial DNA sequences and microsatellite loci

    Full text link
    To investigate the impact of potential marine barriers on gene-flow in high dispersal marine invertebrates, we assessed the population genetic structure of the sea star Astropecten aranciacus. Samples were obtained from nine locations within the Atlantic and the Mediterranean Sea including populations east of the Siculo-Tunisian Strait. We obtained both DNA sequence data of the mitochondrial control region and genotype data at four microsatellite loci. Both markers were highly polymorphic and showed a great level of genetic diversity. Genetic differentiation between populations (F (ST)) was in general low, particularly for nuclear data, as is often the case in high dispersal marine invertebrates. Nevertheless, both marker sets indicated a significant genetic differentiation of the population from the island of Madeira to most other populations. Our results also demonstrate a clear pattern of isolation-by-distance supported by both mitochondrial and nuclear markers. Therefore, we conclude that larval dispersal of A. aranciacus is somewhat limited even within the basins of the Atlantic, the west Mediterranean and the east Mediterranean. Microsatellite loci further revealed genetic differentiation between the three basins; however, it is not clear whether this is truly caused by marine barriers. Genetic differentiation between basins might also be a result of isolation-by-distance allowing for any grouping to be significant as long as geographical neighbors are clustered together. Although levels of genetic differentiation were less pronounced in mirosatellite data, both datasets were coherent and revealed similar patterns of genetic structure in A. aranciacus

    Geographic differentiation of two Atlanto-Mediterranean species of the genus Xantho (Crustacea: Brachyura: Xanthidae) based on genetic and morphometric analyses

    No full text
    The crab genus Xantho Leach, 1814 is restricted to the northeastern Atlantic Ocean and the Mediterranean Sea. It consists of four species, Xantho hydrophilus (Herbst, 1790), X. poressa (Olivi, 1792), X. pilipes A. Milne-Edwards, 1867, and X. sexdentatus (Miers, 1881). X. hydrophilus has been divided into two geographic forms, of which one, X. h. granulicarpus (Forest, 1953), is postulated to be endemic to the Mediterranean Sea. In this study, we reconstruct phylogenetic relationships of the genus Xantho and related genera from the Atlantic Ocean or Mediterranean Sea and compare different geographic populations of Xantho hydrophilus and, to a lesser extent, of X. poressa by means of population genetic and morphometric analyses. The molecular phylogeny is based on two mitochondrial genes (large subunit rRNA and cytochrome oxidase I) and indicates that X. poressa, X. hydrophilus and X. sexdentatus form a monophyletic group, the latter two species sharing identical haplotypes. On the other hand, X. pilipes shows affinities to Xanthodius denticulatus. Population genetics based on the COI gene reveal genetic differentiation within X. hydrophilus. Morphometric results also give evidence for distinct geographic forms in X. hydrophilus with a clear discrimination. In comparison, morphometric discrimination between different geographic populations of X. poressa is less clear, but still significant. We therefore suggest a recent/ongoing morphological and genetic differentiation within Xantho hydrophilus, restricted gene flow between its Atlantic and Mediterranean populations (not allowing subspecific differentiation) and possible mtDNA introgression between the species X. hydrophilus and X. sexdentatus
    corecore