10 research outputs found

    Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever

    Get PDF
    Lassa fever (LF), caused by Lassa virus (LASV), is a viral hemorrhagic fever for which no approved vaccine or potent antiviral treatment is available. LF is a WHO priority disease and, together with rabies, a major health burden in West Africa. Here we present the development and characterization of an inactivated recombinant LASV and rabies vaccine candidate (LASSARAB) that expresses a codon-optimized LASV glycoprotein (coGPC) and is adjuvanted by a TLR-4 agonist (GLA-SE). LASSARAB elicits lasting humoral response against LASV and RABV in both mouse and guinea pig models, and it protects both guinea pigs and mice against LF. We also demonstrate a previously unexplored role for non-neutralizing LASV GPC-specific antibodies as a major mechanism of protection by LASSARAB against LF through antibody-dependent cellular functions. Overall, these findings demonstrate an effective inactivated LF vaccine and elucidate a novel humoral correlate of protection for LF.NIH grants R01 AI105204 to M.J.S., by the Jefferson Vaccine Center, and by the Fundação para a Ciência e Tecnologia (FCT) scholarship PD/BD/105847/2014 (to T.A.-M.). This work was also funded in part through the NIAID Division of Intramural Research and the NIAID Division of Clinical Research, Battelle Memorial Institute’s prime contract with the U.S. National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272200700016Iinfo:eu-repo/semantics/publishedVersio

    Rhabdoviruses as Vaccine Vectors for Veterinary Pathogens

    No full text
    Rhabdoviruses are simple RNA viruses, which are open to genetic manipulation. Recombinant vector vaccines based on vesicular stomatitis virus (VSV) or rabies virus (RABV) are capable of inducing strong and protective immune responses in animals and humans as exemplified by the VSV-based Ebola virus vaccine. As several rhabdoviruses are harmful for animals and/or humans, the recombinant vector vaccine derived from them needs to be properly attenuated. Single-cycle vector vaccines and interferon-stimulating viruses represent attractive strategies to achieve attenuation. VSV and RABV are notifiable Office International des Epizooties (OIE)-listed pathogens, and this has impeded their general use in the veterinary field. However, vector vaccines based on different non-notifiable rhabdoviruses may represent an attractive alternative

    Coronaviruses — drug discovery and therapeutic options

    No full text

    Coronaviruses — drug discovery and therapeutic options

    No full text
    corecore