29 research outputs found
Relationships of mitochondrial DNA mutations and select clinical diagnoses in perinatally HIV- and ART-exposed uninfected children
\ua9 2024 The AuthorsThe prevalence of pathogenic mutations within mitochondrial (mt) DNA of youth who were perinatally exposed to HIV and ART but remained uninfected (YHEU) were assessed relative to phenotypic clinical indicators of mitochondrial dysfunction (MtD). This was a cross-sectional, nested case-control study. A total of 144 cases met at least one clinical MtD definition and were matched with up to two controls each (n = 287). At least one risk mutation was present in nearly all YHEU (97 %). No differences in mutation frequencies were observed between metabolic or neurodevelopmental cases and respective controls; however, higher frequencies were found in controls versus respective neurologic or growth cases
Genome-Wide Analysis of Histone H3 Lysine9 Modifications in Human Mesenchymal Stem Cell Osteogenic Differentiation
Mesenchymal stem cells (MSCs) possess self-renewal and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms such as histone modifications could be critical for determining the fate of stem cells. In this study, full human genome promoter microarrays and expression microarrays were used to explore the roles of histone modifications (H3K9Ac and H3K9Me2) upon the induction of MSC osteogenic differentiation. Our results revealed that the enrichment of H3K9Ac was decreased globally at the gene promoters, whereas the number of promoters enriched with H3K9Me2 was increased evidently upon osteogenic induction. By a combined analysis of data from both ChIP-on-chip and expression microarrays, a number of differentially expressed genes regulated by H3K9Ac and/or H3K9Me2 were identified, implicating their roles in several biological events, such as cell cycle withdraw and cytoskeleton reconstruction that were essential to differentiation process. In addition, our results showed that the vitamin D receptor played a trans-repression role via alternations of H3K9Ac and H3K9Me2 upon MSC osteogenic differentiation. Data from this study suggested that gene activation and silencing controlled by changes of H3K9Ac and H3K9Me2, respectively, were crucial to MSC osteogenic differentiation
Mutation screening in patients with isolated cytochrome c oxidase deficiency
Cytochrome c oxidase (COX) deficiency has been associated with a variety of clinical conditions and can be due to mutations in nuclear or mitochondrial genes. Despite recent progress in our understanding of the molecular bases of COX deficiency, the genetic defect remains elusive in many cases. We performed mutation screening in 30 patients with biochemical evidence of isolated COX deficiency and heterogeneous clinical phenotypes. Sixteen patients had various forms of encephalomyopathy, and six of these had the neuroradiological features of Leigh syndrome. Four patients had encephalohepatopathy, six had hypertrophic cardiomyopathy, and four had other phenotypes. We studied the three mtDNA genes encoding COX subunits, the 22 mtDNA tRNA genes, and seven COX assembly genes: SCO1, SCO2, SURF1, COX10, COX11, COX15, and COX17. We report two novel pathogenic SURF1 mutations in a patient with Leigh syndrome and one novel SCO2 mutation in a patient with hypertrophic cardiomyopathy. These data show that heterogeneous clinical phenotypes are associated with COX deficiency, that mutations in mtDNA COX genes are rare, and that mutations in additional genes remain to be identified
Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition
Coenzyme Q10 (CoQ10) deficiency has been associated with various clinical phenotypes, including an infantile multisystem disorder. The authors report a 33-month-old boy who presented with corticosteroid-resistant nephrotic syndrome in whom progressive encephalomyopathy later developed. CoQ10 was decreased both in muscle and in fibroblasts. Oral CoQ10 improved the neurologic picture but not the renal dysfunction
Mitochondrial DNA depletion and dGK gene mutations
Mitochondrial DNA depletion syndrome is a clinically heterogeneous group of disorders characterized by a reduction in mitochondrial DNA copy number. The recent discovery of mutations in the deoxyguanosine kinase (dGK) gene in patients with the hepatocerebral form of mitochondrial DNA depletion syndrome prompted us to screen 21 patients to determine the frequency of dGK mutations, further characterize the clinical spectrum, and correlate genotypes with phenotypes. We detected mutations in three patients (14%). One patient had a homozygous GATT duplication (nucleotides 763-766), and another had a homozygous GT deletion (nucleotides 609-610); both mutations lead to truncated proteins. The third patient was a compound heterozygote for two missense mutations (R142K and E227K) that affect critical residues of the protein. These mutations were associated with variable phenotypes, and their low frequencies suggests that dGK is not the only gene responsible for mitochondrial DNA depletion in liver. The patient with the missense mutations had isolated liver failure and responded well to liver transplantation, which may be a therapeutic option in selected cases
Mitochondrial DNA depletion: mutations in thymidine kinase gene with myopathy and SMA
BACKGROUND:
The mitochondrial DNA (mtDNA) depletion syndrome (MDS) is an autosomal recessive disorder of early childhood characterized by decreased mtDNA copy number in affected tissues. Recently, MDS has been linked to mutations in two genes involved in deoxyribonucleotide (dNTP) metabolism: thymidine kinase 2 (TK2) and deoxy-guanosine kinase (dGK). Mutations in TK2 have been associated with the myopathic form of MDS, and mutations in dGK with the hepatoencephalopathic form.
OBJECTIVES:
To further characterize the frequency and clinical spectrum of these mutations, the authors screened 20 patients with myopathic MDS.
RESULTS:
No patient had dGK gene mutations, but four patients from two families had TK2 mutations. Two siblings were compound heterozygous for a previously reported H90N mutation and a novel T77M mutation. The other siblings harbored a homozygous I22M mutation, and one of them had evidence of lower motor neuron disease. The pathogenicity of these mutations was confirmed by reduced TK2 activity in muscle (28% to 37% of controls).
CONCLUSIONS:
These results show that the clinical expression of TK2 mutations is not limited to myopathy and that the myopathic form of MDS is genetically heterogeneous