26 research outputs found
Regulation of accretion by its outflow in a symbiotic star: the 2016 outflow fast state of MWC 560
How are accretion discs affected by their outflows? To address this question for white dwarfs accreting from cool giants, we performed optical, radio, X-ray, and ultraviolet observations of the outflow-driving symbiotic star MWC 560 (=V694 Mon) during its 2016 optical high state. We tracked multi-wavelength changes that signalled an abrupt increase in outflow power at the initiation of a months-long outflow fast state, just as the optical flux peaked: (1) an abrupt doubling of Balmer absorption velocities; (2) the onset of a Jy/month increase in radio flux; and (3) an order-of-magnitude increase in soft X-ray flux. Juxtaposing to prior X-ray observations and their coeval optical spectra, we infer that both high-velocity and low-velocity optical outflow components must be simultaneously present to yield a large soft X-ray flux, which may originate in shocks where these fast and slow absorbers collide. Our optical and ultraviolet spectra indicate that the broad absorption-line gas was fast, stable, and dense ( cm) throughout the 2016 outflow fast state, steadily feeding a lower-density ( cm) region of radio-emitting gas. Persistent optical and ultraviolet flickering indicate that the accretion disc remained intact. The stability of these properties in 2016 contrasts to their instability during MWC 560's 1990 outburst, even though the disc reached a similar accretion rate. We propose that the self-regulatory effect of a steady fast outflow from the disc in 2016 prevented a catastrophic ejection of the inner disc. This behaviour in a symbiotic binary resembles disc/outflow relationships governing accretion state changes in X-ray binaries
Observational Constraints on the Common Envelope Phase
The common envelope phase was first proposed more than forty years ago to
explain the origins of evolved, close binaries like cataclysmic variables. It
is now believed that the phase plays a critical role in the formation of a wide
variety of other phenomena ranging from type Ia supernovae through to binary
black holes, while common envelope mergers are likely responsible for a range
of enigmatic transients and supernova imposters. Yet, despite its clear
importance, the common envelope phase is still rather poorly understood. Here,
we outline some of the basic principles involved, the remaining questions as
well as some of the recent observational hints from common envelope phenomena -
namely planetary nebulae and luminous red novae - which may lead to answering
these open questions.Comment: 29 pages, 8 figures. To appear in the book "Reviews in Frontiers of
Modern Astrophysics: From Space Debris to Cosmology" (eds. Kabath, Jones and
Skarka; publisher Springer Nature) funded by the European Union Erasmus+
Strategic Partnership grant "Per Aspera Ad Astra Simul"
2017-1-CZ01-KA203-03556