9 research outputs found

    The semiochemically mediated interactions between bacteria and insects

    Full text link
    In natural environment, semiochemicals are involved in many interactions between the different trophic levels involving insects, plants and hosts for parasitoids or prey for predators. These volatile compounds act as messengers within or between insect species, inducing particular behaviours such as the localisation of a source of food, the orientation to an adequate oviposition site, the selection of a suitable breeding site and the localisation of hosts or prey. In this sense, bacteria have been shown to play an important role in the production of volatile compounds which ones act as semiochemicals. This review, focusing on the semiochemically-mediated interactions between bacteria and insects, highlights that bacterial semiochemicals act as important messengers for insects. Indeed, in most of the studies reported here, insects respond to specific volatiles emitted by specific bacteria hosted by the insect itself (gut, mouthparts, etc.) or present in the natural environment where the insect evolves. Particularly, bacteria from the families Enterobacteriaceae, Pseudomonaceae and Bacillaceae are involved in many interactions with insects. Because semiochemicals naturally produced by bacteria could be a very interesting option for pest management, advances in this field are discussed in the context of biological control against insect pests.Solaphi

    Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis

    Get PDF
    Bactrocera dorsalis is one of the most economically important fruit flies around the world. In this study, 454 pyrosequencing was used to identify the bacteria associated with different developmental stages of B. dorsalis. At ≥ 97% nucleotide similarity, total reads could be assigned to 172 Operational Taxonomic Units belonging to six phyla. Proteobacteria dominated in immature stages while Firmicutes dominated in adult stages. The most abundant families were Enterococcaceae and Comamondaceae. The genus Comamonas was most abundant in pupae whereas completely absent in adults. Some identified species had low sequence similarity to reported species indicating the possibility of novel taxa. However, a majority sequence reads were similar to sequences previously identified to be associated with Bactrocera correcta, suggesting a characteristic microbial fauna for this insect genus. The type and abundance of different bacterial groups varied across the life stages of B. dorsalis. Selection pressure exerted by the host insect as a result of its habitat and diet choices could be the reason for the observed shift in the bacteria groups. These findings increase our understanding of the intricate symbiotic relationships between bacteria and B. dorsalis and provide clues to develop potential biocontrol techniques against this fruit fly

    History and Development of Food-Based Attractants

    No full text

    Pheromones, Male Lures, and Trapping of Tephritid Fruit Flies

    No full text
    corecore