11 research outputs found

    Glucose sensing in the pancreatic beta cell: a computational systems analysis

    Get PDF

    Net primary productivity and its partitioning in response to precipitation gradient in an alpine meadow

    No full text
    Abstract The dynamics of net primary productivity (NPP) and its partitioning to the aboveground versus belowground are of fundamental importance to understand carbon cycling and its feedback to climate change. However, the responses of NPP and its partitioning to precipitation gradient are poorly understood. We conducted a manipulative field experiment with six precipitation treatments (1/12 P, 1/4 P, 1/2 P, 3/4 P, P, and 5/4 P, P is annual precipitation) in an alpine meadow to examine aboveground and belowground NPP (ANPP and BNPP) in response to precipitation gradient in 2015 and 2016. We found that changes in precipitation had no significant impact on ANPP or belowground biomass in 2015. Compared with control, only the extremely drought treatment (1/12 P) significantly reduced ANPP by 37.68% and increased BNPP at the depth of 20–40 cm by 80.59% in 2016. Across the gradient, ANPP showed a nonlinear response to precipitation amount in 2016. Neither BNPP nor NPP had significant relationship with precipitation changes. The variance in ANPP were mostly due to forbs production, which was ultimately caused by altering soil water content and soil inorganic nitrogen concentration. The nonlinear precipitation-ANPP relationship indicates that future precipitation changes especially extreme drought will dramatically decrease ANPP and push this ecosystem beyond threshold

    Climate Change and Water Use Partitioning by Different Plant Functional Groups in a Grassland on the Tibetan Plateau

    Get PDF
    The Tibetan Plateau (TP) is predicted to experience increases in air temperature, increases in snowfall, and decreases in monsoon rains; however, there is currently a paucity of data that examine the ecological responses to such climate changes. In this study, we examined the effects of increased air temperature and snowfall on: 1) water use partitioning by different plant functional groups, and 2) ecosystem CO(2) fluxes throughout the growing season. At the individual plant scale, we used stable hydrogen isotopes (δD) to partition water use between shallow- and deep-rooted species. Prior to the arrival of summer precipitation (typically mid-July), snowmelt was the main water source in the soils. During this time, shallow and deep-rooted species partitioned water use by accessing water from shallow and deep soils, respectively. However, once the monsoon rains arrived, all plants used rainwater from the upper soils as the main water source. Snow addition did not result in increased snowmelt use throughout the growing season; instead, snowmelt water was pushed down into deeper soils when the rains arrived. At the larger plot scale, CO(2) flux measurements demonstrated that rain was the main driver for net ecosystem productivity (NEP). NEP rates were low during June and July and reached a maximum during the monsoon season in August. Warming decreased NEP through a reduction in gross primary productivity (GPP), and snow additions did not mitigate the negative effects of warming by increasing NEP or GPP. Both the isotope and CO(2) flux results suggest that rain drives productivity in the Nam Tso region on the TP. This also suggests that the effects of warming-induced drought on the TP may not be mitigated by increased snowfall. Further decreases in summer monsoon rains may affect ecosystem productivity, with large implications for livestock-based livelihoods

    Genetically diabetic animals.

    No full text
    Several animal species, mostly rodents, were described to exhibit spontaneously diabetes mellitus on a hereditary basis. These findings were highly appreciated with the expectation to get more insight into the pathogenesis of diabetes in humans. During the last few years since the discovery of leptin (Zhang et al. 1994) and its downstream signal transduction cascade (Friedman and Halaas 1998), tremendous new insight of the genetics of diabetic and obese animal disease models was derived. Up to now, at least six genetically diabetic animal models exhibit defects in the leptin pathway: the ob mutation in the mouse resulted in leptin deficiency. The db mutation in the mouse and the cp and fa mutations in the rat are different mutations of the leptin receptor gene. The fat mutation in the mouse results in a biologically inactive carboxypeptidase E, which processes the prohormone conversion of POMC into α-MSH, which activates the hypothalamic MC4 receptor. Finally the Agouti yellow (y) mouse exhibit a ubiquitous expression of the Agouti protein which represents an antagonist of the hypothalamic MC4 receptor
    corecore