4 research outputs found
Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic
Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer
The Mantle Section of Neoproterozoic Ophiolites from the Pan-African Belt, Eastern Desert, Egypt: Tectonomagmatic Evolution, Metamorphism, and Mineralization
The Eastern Desert (ED) Neoproterozoic ophiolites are tectonically important elements of the Arabian–Nubian Shield. Although affected by various degrees of dismemberment, metamorphism, and alteration, almost all of the diagnostic Penrose-type ophiolite components can be found, namely, lower units of serpentinized peridotite tectonite and cumulate ultramafics and upper units of layered and isotropic gabbros, plagiogranites, sheeted dykes and pillow lavas. The contacts between the lower unit (mantle section) and the upper unit (crustal section) were originally magmatic, but in all cases are now disrupted by tectonism. The mantle sections of the ED ophiolites are exposed as folded thrust sheets bearing important and distinctive lithologies of serpentinized peridotites of harzburgite and dunite protoliths with occasional podiform chromitites. The ED ophiolites show a spatial and temporal association with suture zones that indicate fossil subduction zone locations. Multiple episodes of regional metamorphism mostly reached greenschist facies with less common amphibolite facies localities. CO₂-metasomatism resulted in the development of talc–carbonate, listvenite, magnesite, and other carbonate-bearing meta-ultramafic rocks. Geochemical data from the ED serpentinites, despite some confounding effects of hydration and alteration, resemble modern oceanic peridotites. The ED serpentinites show high LOI (≤20 wt%); Mg# mostly higher than 0.89; enrichment of Ni, Cr, and Co; depletion of Al₂O₃ and CaO; and nearly flat, depleted, and unfractionated chondrite-normalized REE patterns. The modal abundance of clinopyroxene is very low if it is present at all. Chromian spinel survived metamorphism and is widely used as the most reliable petrogenetic and geotectonic indicator in the ED ophiolite mantle sections. The high-Cr# (mostly ~0.7) and low-TiO₂ (mostly ≤ 0.1 wt%) characters of chromian spinel indicate a high degree of partial melt extraction (≥30%), which is commonly associated with fore-arc settings and equilibration with boninite-like or high-Mg tholeiite melts. Based on the general petrological characteristics, the ED ophiolitic chromitites are largely similar to Phanerozoic examples that have been attributed to melt–peridotite interaction and subsequent melt mixing in fore-arc settings. The comparison between the ED Neoproterozoic mantle peridotites and Phanerozoic equivalents indicates considerable similarity in tectonomagmatic processes and does not support any major changes in the geothermal regime of subduction zones on Earth since the Neoproterozoic era. The mantle sections of ED ophiolites are worthy targets for mining and exploration, hosting a variety of ores (chromite, gold, and iron/nickel laterites) and industrial minerals (talc, asbestos, and serpentine)