29 research outputs found

    Quantum walks-based simple authenticated quantum cryptography protocols for secure wireless sensor networks

    Get PDF
    Wireless sensor networks play a crucial role in various applications, ranging from environmental monitoring to industrial automation that require high levels of security. With the development of quantum technologies, many security mechanisms maybe hacked due to the promising capabilities of quantum computation. To address this challenge, quantum protocols have emerged as a promising solution for enhancing the security of wireless sensor communications. One of the common types of quantum protocols is quantum key distribution (QKD) protocols, which are investigated to allow two participants with fully quantum capabilities to share a random secret key, while semi-quantum key distribution (SQKD) protocols are designed to perform the same task using fewer quantum resources to make quantum communications more realizable and practical. Quantum walk plays an essential role in quantum computing, which is a universal quantum computational paradigm. In this work, we utilize the advantages of quantum walk to design three authenticated quantum cryptographic protocols to establish secure channels for data transmission between sensor nodes: the first one is authenticated quantum key distribution (AQKD), the second one is authenticated semi quantum key distribution (ASQKD) with one of the two participants having limited quantum capabilities, and the last one is authenticated semi-quantum key distribution but both legitimate users possess limited quantum resources. The advantages of the proposed protocols are that the partners can exchange several different keys with the same exchanged qubits, and the presented protocols depend on a one-way quantum communication channel. In contrast, all previously designed SQKD protocols rely on two-way quantum communication. Security analyses prove that the presented protocols are secure against various well known attacks and highly efficient. The utilization of the presented protocols in wireless sensor communications opens up new avenues for secure and trustworthy data transmission, enabling the deployment of resilient wireless sensor networks in critical applications. This work also paves the way for future exploration of quantum-based security protocols and their integration into wireless sensor networks for enhanced data protection

    DITrust Chain: Towards Blockchain-Based Trust Models for Sustainable Healthcare IoT Systems

    Get PDF
    © 2013 IEEE. Today, internet and device ubiquity are paramount in individual, formal and societal considerations. Next generation communication technologies, such as Blockchains (BC), Internet of Things (IoT), cloud computing, etc. offer limitless capabilities for different applications and scenarios including industries, cities, healthcare systems, etc. Sustainable integration of healthcare nodes (i.e. devices, users, providers, etc.) resulting in healthcare IoT (or simply IoHT) provides a platform for efficient service delivery for the benefit of care givers (doctors, nurses, etc.) and patients. Whereas confidentiality, accessibility and reliability of medical data are accorded high premium in IoHT, semantic gaps and lack of appropriate assets or properties remain impediments to reliable information exchange in federated trust management frameworks. Consequently, We propose a Blockchain Decentralised Interoperable Trust framework (DIT) for IoT zones where a smart contract guarantees authentication of budgets and Indirect Trust Inference System (ITIS) reduces semantic gaps and enhances trustworthy factor (TF) estimation via the network nodes and edges. Our DIT IoHT makes use of a private Blockchain ripple chain to establish trustworthy communication by validating nodes based on their inter-operable structure so that controlled communication required to solve fusion and integration issues are facilitated via different zones of the IoHT infrastructure. Further, text{C}mathrm {sharp } implementation using Ethereum and ripple Blockchain are introduced as frameworks to associate and aggregate requests over trusted zones

    A New Chaotic Map with Dynamic Analysis and Encryption Application in Internet of Health Things

    Get PDF
    © 2013 IEEE. In this paper, we report an effective cryptosystem aimed at securing the transmission of medical images in an Internet of Healthcare Things (IoHT) environment. This contribution investigates the dynamics of a 2-D trigonometric map designed using some well-known maps: Logistic-sine-cosine maps. Stability analysis reveals that the map has an infinite number of solutions. Lyapunov exponent, bifurcation diagram, and phase portrait are used to demonstrate the complex dynamic of the map. The sequences of the map are utilized to construct a robust cryptosystem. First, three sets of key streams are generated from the newly designed trigonometric map and are used jointly with the image components (R, G, B) for hamming distance calculation. The output distance-vector, corresponding to each component, is then Bit-XORed with each of the key streams. The output is saved for further processing. The decomposed components are again Bit-XORed with key streams to produce an output, which is then fed into the conditional shift algorithm. The Mandelbrot Set is used as the input to the conditional shift algorithm so that the algorithm efficiently applies confusion operation (complete shuffling of pixels). The resultant shuffled vectors are then Bit-XORed (Diffusion) with the saved outputs from the early stage, and eventually, the image vectors are combined to produce the encrypted image. Performance analyses of the proposed cryptosystem indicate high security and can be effectively incorporated in an IoHT framework for secure medical image transmission

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone
    corecore