16 research outputs found

    Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    Get PDF
    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 10(13) cm(-3)) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices

    Non-dissipative internal optical filtering with solution-grown perovskite single crystals for full-colour imaging

    No full text
    Herein we demonstrate that solution-grown single crystals of semiconducting methylammonium lead halide perovskites (MAPbX3, where MA=CH3NH3+, X=Cl−, Br− and Br/I−) can be used as semiconductor absorbers for full-colour imaging. A one-pixel photodetector prototype was constructed by stacking three layers of blue-, green- and red-sensitive MAPbCl3, MAPbBr3 and MAPb(Br/I)3 crystals, respectively. The prototype detector was demonstrated to recognize and faithfully reproduce coloured images by recombination of the signals from each individual colour channel. This layered structure concept, besides imparting a two- to three-fold reduction in the number of required pixels, also offers several other advantages over conventional technologies: three times more efficient light utilization (and thus higher sensitivity) than common Bayer scheme devices based on dissipative optical filters, colour moiré suppression and no need for de-mosaic image processing. In addition, the direct band gap structure of perovskites results in optical absorption that is several orders of magnitude greater than silicon. This opens a promising avenue towards the reduction of pixel-size in next-generation devices as compared with conventional silicon-based technologies

    Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process

    Get PDF
    Photovoltaic devices based on metal halide perovskites are rapidly improving in efficiency. Once the Shockley–Queisser limit is reached, charge-carrier extraction will be limited only by radiative bimolecular recombination of electrons with holes. Yet, this fundamental process, and its link with material stoichiometry, is still poorly understood. Here we show that bimolecular charge-carrier recombination in methylammonium lead triiodide perovskite can be fully explained as the inverse process of absorption. By correctly accounting for contributions to the absorption from excitons and electron-hole continuum states, we are able to utilise the van Roosbroeck–Shockley relation to determine bimolecular recombination rate constants from absorption spectra. We show that the sharpening of photon, electron and hole distribution functions significantly enhances bimolecular charge recombination as the temperature is lowered, mirroring trends in transient spectroscopy. Our findings provide vital understanding of band-to-band recombination processes in this hybrid perovskite, which comprise direct, fully radiative transitions between thermalized electrons and holes
    corecore