18 research outputs found
Activation of DNA-PK by Ionizing Radiation Is Mediated by Protein Phosphatase 6
DNA-dependent protein kinase (DNA-PK) plays a critical role in DNA damage repair, especially in non-homologous end-joining repair of double-strand breaks such as those formed by ionizing radiation (IR) in the course of radiation therapy. Regulation of DNA-PK involves multisite phosphorylation but this is incompletely understood and little is known about protein phosphatases relative to DNA-PK. Mass spectrometry analysis revealed that DNA-PK interacts with the protein phosphatase-6 (PP6) SAPS subunit PP6R1. PP6 is a heterotrimeric enzyme that consists of a catalytic subunit, plus one of three PP6 SAPS regulatory subunits and one of three ankyrin repeat subunits. Endogenous PP6R1 co-immunoprecipitated DNA-PK, and IR enhanced the amount of complex and promoted its import into the nucleus. In addition, siRNA knockdown of either PP6R1 or PP6 significantly decreased IR activation of DNA-PK, suggesting that PP6 activates DNA-PK by association and dephosphorylation. Knockdown of other phosphatases PP5 or PP1γ1 and subunits PP6R3 or ARS-A did not reduce IR activation of DNA-PK, demonstrating specificity for PP6R1. Finally, siRNA knockdown of PP6R1 or PP6 but not other phosphatases increased the sensitivity of glioblastoma cells to radiation-induced cell death to a level similar to DNA-PK deficient cells. Our data demonstrate that PP6 associates with and activates DNA-PK in response to ionizing radiation. Therefore, the PP6/PP6R1 phosphatase is a potential molecular target for radiation sensitization by chemical inhibition
DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells
Human chromosomal fragile sites are regions of the
genome that are prone to DNA breakage, and are
classified as common or rare, depending on their frequency
in the population. Common fragile sites frequently
coincide with the location of genes involved in carcinogenic
chromosomal translocations, suggesting their role in
cancer formation. However, there has been no direct
evidence linking breakage at fragile sites to the formation
of a cancer-specific translocation. Here, we studied the
involvement of fragile sites in the formation of RET/PTC
rearrangements, which are frequently found in papillary
thyroid carcinoma (PTC). These rearrangements are
commonly associated with radiation exposure; however,
most of the tumors found in adults are not linked to
radiation. In this study, we provide structural and
biochemical evidence that the RET, CCDC6 and NCOA4
genes participating in two major types of RET/PTC
rearrangements, are located in common fragile sites
FRA10C and FRA10G, and undergo DNA breakage
after exposure to fragile site-inducing chemicals. Moreover,
exposure of human thyroid cells to these chemicals
results in the formation of cancer-specific RET/PTC
rearrangements. These results provide the direct evidence
for the involvement of chromosomal fragile sites in the
generation of cancer-specific rearrangements in human cell
RAD50, an SMC family member with multiple roles in DNA break repair: How does ATP affect function?
The protein complex including Mre11, Rad50, and Nbs1 (MRN) functions in DNA double-strand break repair to recognize and process DNA ends as well as signal for cell cycle arrest. Amino acid sequence similarity and overall architecture make Rad50 a member of the structural maintenance of chromosome (SMC) protein family. Like SMC proteins, Rad50 function depends on ATP binding and hydrolysis. All current evidence indicates that ATP binding and hydrolysis cause architectural rearrangements in SMC protein complexes that are important for their functions in organizing DNA. In the case of the MRN complex, the functional significance of ATP binding and hydrolysis are not yet defined. Here we review the data on the ATP-dependent activities of MRN and their possible mechanistic significance. We present some speculation on the role of ATP for function of the MRN complex based on the similarities and differences in the molecular architecture of the Rad50-containing complexes and the SMC complexes condensin and cohesin