854 research outputs found

    String Driven Cosmology and its Predictions

    Full text link
    We present a minimal model for the Universe evolution fully extracted from effective String Theory. This model is by its construction close to the standard cosmological evolution, and it is driven selfconsistently by the evolution of the string equation of state itself. The inflationary String Driven stage is able to reach enough inflation, describing a Big Bang like evolution for the metric. By linking this model to a minimal but well established observational information, (the transition times of the different cosmological epochs), we prove that it gives realistic predictions on early and current energy density and its results are compatible with General Relativity. Interestingly enough, the predicted current energy density is found Omega = 1 and a lower limit Omega \geq 4/9 is also found. The energy density at the exit of the inflationary stage also gives | Omega |_{inf}=1. This result shows an agreement with General Relativity (spatially flat metric gives critical energy density) within an inequivalent Non-Einstenian context (string low energy effective equations). The order of magnitude of the energy density-dilaton coupled term at the beginning of the radiation dominated stage agrees with the GUT scale. The predicted graviton spectrum is computed and analyzed without any free parameters. Peaks and asymptotic behaviours of the spectrum are a direct consequence of the dilaton involved and not only of the scale factor evolution. Drastic changes are found at high frequencies: the dilaton produces an increasing spectrum (in no string cosmologies the spectrum is decreasing). Without solving the known problems about higher order corrections and graceful exit of inflation, we find this model closer to the observational Universe than the current available string cosmology scenarii.Comment: LaTex, 22 pages, Lectures delivered at the Chalonge School, Nato ASI: Phase Transitions in the Early Universe: Theory and Observations. To appear in the Proceedings, Editors H. J. de Vega, I. Khalatnikov, N. Sanchez. (Kluwer Pub

    Annular Vortex Solutions to the Landau-Ginzburg Equations in Mesoscopic Superconductors

    Get PDF
    New vortex solutions to the Landau-Ginzburg equations are described. These configurations, which extend the well known Abrikosov and giant magnetic vortex ones, consist of a succession of ring-like supercurrent vortices organised in a concentric pattern, possibly bound to a giant magnetic vortex then lying at their center. The dynamical and thermodynamic stability of these annular vortices is an important open issue on which hinges the direct experimental observation of such configurations. Nevertheless, annular vortices should affect indirectly specific dynamic properties of mesoscopic superconducting devices amenable to physical observation.Comment: 12 pages, LaTeX, 2 Postscript figure

    On the perturbative S-matrix of generalized sine-Gordon models

    Full text link
    Motivated by its relation to the Pohlmeyer reduction of AdS_5 x S^5 superstring theory we continue the investigation of the generalized sine-Gordon model defined by SO(N+1)/SO(N) gauged WZW theory with an integrable potential. Extending our previous work (arXiv:0912.2958) we compute the one-loop two-particle S-matrix for the elementary massive excitations. In the N = 2 case corresponding to the complex sine-Gordon theory it agrees with the charge-one sector of the quantum soliton S-matrix proposed in hep-th/9410140. In the case of N > 2 when the gauge group SO(N) is non-abelian we find a curious anomaly in the Yang-Baxter equation which we interpret as a gauge artifact related to the fact that the scattered particles are not singlets under the residual global subgroup of the gauge group

    On semiclassical approximation for correlators of closed string vertex operators in AdS/CFT

    Full text link
    We consider the 2-point function of string vertex operators representing string state with large spin in AdS_5. We compute this correlator in the semiclassical approximation and show that it has the expected (on the basis of state-operator correspondence) form of the strong-coupling limit of the 2-point function of single trace minimal twist operators in gauge theory. The semiclassical solution representing the stationary point of the path integral with two vertex operator insertions is found to be related to the large spin limit of the folded spinning string solution by a euclidean continuation, transformation to Poincare coordinates and conformal map from cylinder to complex plane. The role of the source terms coming from the vertex operator insertions is to specify the parameters of the solution in terms of quantum numbers (dimension and spin) of the corresponding string state. Understanding further how similar semiclassical methods may work for 3-point functions may shed light on strong-coupling limit of the corresponding correlators in gauge theory as was recently suggested by Janik et al in arXiv:1002.4613.Comment: 19 pages, 1 figure; minor corrections, references added, footnote below eq. (4.5) adde

    Inherent Signals in Sequencing-Based Chromatin-ImmunoPrecipitation Control Libraries

    Get PDF
    The growth of sequencing-based Chromatin Immuno-Precipitation studies call for a more in-depth understanding of the nature of the technology and of the resultant data to reduce false positives and false negatives. Control libraries are typically constructed to complement such studies in order to mitigate the effect of systematic biases that might be present in the data. In this study, we explored multiple control libraries to obtain better understanding of what they truly represent.First, we analyzed the genome-wide profiles of various sequencing-based libraries at a low resolution of 1 Mbp, and compared them with each other as well as against aCGH data. We found that copy number plays a major influence in both ChIP-enriched as well as control libraries. Following that, we inspected the repeat regions to assess the extent of mapping bias. Next, significantly tag-rich 5 kbp regions were identified and they were associated with various genomic landmarks. For instance, we discovered that gene boundaries were surprisingly enriched with sequenced tags. Further, profiles between different cell types were noticeably distinct although the cell types were somewhat related and similar.We found that control libraries bear traces of systematic biases. The biases can be attributed to genomic copy number, inherent sequencing bias, plausible mapping ambiguity, and cell-type specific chromatin structure. Our results suggest careful analysis of control libraries can reveal promising biological insights

    Phase transitions in the early and the present Universe

    Full text link
    The evolution of the Universe is the ultimate laboratory to study fundamental physics across energy scales that span about 25 orders of magnitude: from the grand unification scale through particle and nuclear physics scales down to the scale of atomic physics. The standard models of cosmology and particle physics provide the basic understanding of the early and present Universe and predict a series of phase transitions that occurred in succession during the expansion and cooling history of the Universe. We survey these phase transitions, highlighting the equilibrium and non-equilibrium effects as well as their observational and cosmological consequences. We discuss the current theoretical and experimental programs to study phase transitions in QCD and nuclear matter in accelerators along with the new results on novel states of matter as well as on multi- fragmentation in nuclear matter. A critical assessment of similarities and differences between the conditions in the early universe and those in ultra- relativistic heavy ion collisions is presented. Cosmological observations and accelerator experiments are converging towards an unprecedented understanding of the early and present Universe.Comment: 41 pages, 16 figures, to appear in Ann. Rev. Nucl. Part. Sci 2006. Presentation improved, references adde

    Integrable models: from dynamical solutions to string theory

    Full text link
    We review the status of integrable models from the point of view of their dynamics and integrability conditions. Some integrable models are discussed in detail. We comment on the use it is made of them in string theory. We also discuss the Bethe Ansatz solution of the SO(6) symmetric Hamiltonian with SO(6) boundary. This work is especially prepared for the seventieth anniversaries of Andr\'{e} Swieca (in memoriam) and Roland K\"{o}berle.Comment: 24 pages, to appear in Brazilian Journal of Physic

    UNCLES: Method for the identification of genes differentially consistently co-expressed in a specific subset of datasets

    Get PDF
    Background: Collective analysis of the increasingly emerging gene expression datasets are required. The recently proposed binarisation of consensus partition matrices (Bi-CoPaM) method can combine clustering results from multiple datasets to identify the subsets of genes which are consistently co-expressed in all of the provided datasets in a tuneable manner. However, results validation and parameter setting are issues that complicate the design of such methods. Moreover, although it is a common practice to test methods by application to synthetic datasets, the mathematical models used to synthesise such datasets are usually based on approximations which may not always be sufficiently representative of real datasets. Results: Here, we propose an unsupervised method for the unification of clustering results from multiple datasets using external specifications (UNCLES). This method has the ability to identify the subsets of genes consistently co-expressed in a subset of datasets while being poorly co-expressed in another subset of datasets, and to identify the subsets of genes consistently co-expressed in all given datasets. We also propose the M-N scatter plots validation technique and adopt it to set the parameters of UNCLES, such as the number of clusters, automatically. Additionally, we propose an approach for the synthesis of gene expression datasets using real data profiles in a way which combines the ground-truth-knowledge of synthetic data and the realistic expression values of real data, and therefore overcomes the problem of faithfulness of synthetic expression data modelling. By application to those datasets, we validate UNCLES while comparing it with other conventional clustering methods, and of particular relevance, biclustering methods. We further validate UNCLES by application to a set of 14 real genome-wide yeast datasets as it produces focused clusters that conform well to known biological facts. Furthermore, in-silico-based hypotheses regarding the function of a few previously unknown genes in those focused clusters are drawn. Conclusions: The UNCLES method, the M-N scatter plots technique, and the expression data synthesis approach will have wide application for the comprehensive analysis of genomic and other sources of multiple complex biological datasets. Moreover, the derived in-silico-based biological hypotheses represent subjects for future functional studies.The National Institute for Health Research (NIHR) under its Programme Grants for Applied Research Programme (Grant Reference Number RP-PG-0310-1004)

    Residual stress analysis and finite element modelling of repair-welded titanium sheets

    Get PDF
    An innovative FE modelling approach has been tested to investigate the effects of weld repair thin sheets of titanium alloy, taking into account pre-existing stress field in the components. In the case study analysed, the residual stress fields due to the original welds are introduced by means of a preliminary sequentially-coupled thermo-mechanical analysis and considered as pre-existing stress in the sheets for the subsequent weld simulation. Comparisons are presented between residual stress predictions and experimental measurements available from the literature with the aim of validating the numerical procedure. As a destructive sectioning technique was used in the reference experimental measurements, an investigation is also presented on the use of the element deactivation strategy when adopted to simulate material removal. Although the numerical tool is an approximate approach to simulate the actual material removal, the strategy appears to compute a physical strain relaxation and stress redistribution in the remaining part of the component. The weld repair modelling strategy and the element deactivation tool adopted to simulate the residual stress measurement technique are shown to predict residual stress trends which are very well correlated with experimental findings from the literature
    corecore