16 research outputs found

    A study of many-body phenomena in metal nanoclusters (Au, Cu) close to their transition to the nonmetallic state

    No full text
    The results of a study of many-body phenomena in gold and copper nanoclusters are presented. The measured conductivity as a function of nanocluster height h was found to have a minimum at h approximate to 0.6 nm. Conductivity was local in character at nanocluster sizes l infinity) to nonmetallic (epsilon proportional to l(2)). The many-body phenomenon characteristics observed in the X-ray photoelectron and tunnel spectra of gold and copper nanoclusters as the size of the nanoclusters changed led us to suggest changes in the band structure of the nanoclusters and, therefore, their possible transition from the metallic to nonmetallic state

    Earthquake Hazard in Bihar

    No full text

    Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap

    No full text
    Remote sensing data and methods are widely deployed in order to contribute to the assessment of numerous components of earthquake risk. While for earthquake hazardrelated investigations, the use of remotely sensed data is an established methodological element with a long research tradition, earthquake vulnerability–centred assessments incorporating remote sensing data are increasing primarily in recent years. This goes along with a changing perspective of the scientific community which considers the assessment of vulnerability and its constituent elements as a pivotal part of a comprehensive risk analysis. Thereby, the availability of new sensors systems enables an appreciable share of remote sensing first. In this manner, a survey of the interdisciplinary conceptual literature dealing with the scientific perception of risk, hazard and vulnerability reveals the demand for a comprehensive description of earthquake hazards as well as an assessment of the present and future conditions of the elements exposed. A review of earthquake-related remote sensing literature, realized both in a qualitative and quantitative manner, shows the already existing and published manifold capabilities of remote sensing contributing to assess earthquake risk. These include earthquake hazard-related analysis such as detection and measurement of lineaments and surface deformations in pre- and post-event applications. Furthermore, pre-event seismic vulnerability–centred assessment of the built and natural environment and damage assessments for post-event applications are presented. Based on the review and the discussion of scientific trends and current research projects, first steps towards a roadmap for remote sensing are drawn, explicitly taking scientific, technical, multi- and transdisciplinary as well as political perspectives into account, which is intended to open possible future research activities
    corecore