74 research outputs found

    Darolutamide does not interfere with OATP-mediated uptake of docetaxel

    Get PDF
    The addition of darolutamide, an androgen receptor signalling inhibitor, to therapy with docetaxel has recently been approved as a strategy to treat metastatic prostate cancer. OATP1B3 is an SLC transporter that is highly expressed in prostate cancer and is responsible for the accumulation of substrates, including docetaxel, into tumours. Given that darolutamide inhibits OATP1B3 in vitro, we sought to characterise the impact of darolutamide on docetaxel pharmacokinetics. We investigated the influence of darolutamide on OATP1B3 transport using in vitro and in vivo models. We assessed the impact of darolutamide on the tumour accumulation of docetaxel in a patient-derived xenograft (PDX) model and on an OATP1B biomarker in patients. Darolutamide inhibited OATP1B3 in vitro at concentrations higher than the reported Cmax. Consistent with these findings, in vivo studies revealed that darolutamide does not influence the pharmacokinetics of Oatp1b substrates, including docetaxel. Docetaxel accumulation in PDX tumours was not decreased in the presence of darolutamide. Metastatic prostate cancer patients had similar levels of OATP1B biomarkers, regardless of treatment with darolutamide. Consistent with a low potential to inhibit OATP1B3-mediated transport in vitro, darolutamide does not significantly impede the transport of Oatp1b substrates in vivo or in patients. Our findings support combined treatment with docetaxel and darolutamide, as no OATP1B3 transporter based drug–drug interaction was identified

    Darolutamide does not interfere with OATP-mediated uptake of docetaxel

    Get PDF
    The addition of darolutamide, an androgen receptor signalling inhibitor, to therapy with docetaxel has recently been approved as a strategy to treat metastatic prostate cancer. OATP1B3 is an SLC transporter that is highly expressed in prostate cancer and is responsible for the accumulation of substrates, including docetaxel, into tumours. Given that darolutamide inhibits OATP1B3 in vitro, we sought to characterise the impact of darolutamide on docetaxel pharmacokinetics. We investigated the influence of darolutamide on OATP1B3 transport using in vitro and in vivo models. We assessed the impact of darolutamide on the tumour accumulation of docetaxel in a patient-derived xenograft (PDX) model and on an OATP1B biomarker in patients. Darolutamide inhibited OATP1B3 in vitro at concentrations higher than the reported Cmax. Consistent with these findings, in vivo studies revealed that darolutamide does not influence the pharmacokinetics of Oatp1b substrates, including docetaxel. Docetaxel accumulation in PDX tumours was not decreased in the presence of darolutamide. Metastatic prostate cancer patients had similar levels of OATP1B biomarkers, regardless of treatment with darolutamide. Consistent with a low potential to inhibit OATP1B3-mediated transport in vitro, darolutamide does not significantly impede the transport of Oatp1b substrates in vivo or in patients. Our findings support combined treatment with docetaxel and darolutamide, as no OATP1B3 transporter based drug–drug interaction was identified

    Multiple etiologies of axonal sensory motor polyneuropathy in a renal transplant recipient: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Neurological complications leading to morbidity and mortality are not frequent in renal transplant recipients. Here, we report a renal transplant recipient who presented with diminished strength in his limbs probably due to multiple etiologies of axonal sensorimotor polyneuropathy, which resolved with intravenous immunoglobulin.</p> <p>Case presentation</p> <p>A 49-year-old Iranian male renal transplant recipient with previous history of autosomal dominant polycystic kidney disease presented with diminished strength in his limbs one month after surgery. Our patient was on cyclosporine A, mycophenolate mofetil and prednisone. Although a detected hypophosphatemia was corrected with supplemental phosphate, the loss of strength was still slowly progressive and diffuse muscular atrophy was remarkable in his trunk, upper limb and pelvic girdle. Meanwhile, his cranial nerves were intact. Post-transplant diabetes mellitus was diagnosed and insulin therapy was initiated. In addition, as a high serum cyclosporine level was detected, the dose of cyclosporine was reduced. Our patient was also put on intravenous ganciclovir due to positive serum cytomegalovirus immunoglobulin M antibody. Despite the reduction of oral cyclosporine dose along with medical therapy for the cytomegalovirus infection and diabetes mellitus, his muscular weakness and atrophy did not improve. One week after administration of intravenous immunoglobulin, a significant improvement was noted in his muscular weakness.</p> <p>Conclusion</p> <p>A remarkable response to intravenous immunoglobulin is compatible with an immunological basis for the present condition (post-transplant polyneuropathy). In cases of post-transplant polyneuropathy with a high clinical suspicion of immunological origin, administration of intravenous immunoglobulin may be recommended.</p

    Importance of Achromatic Contrast in Short-Range Fruit Foraging of Primates

    Get PDF
    Trichromatic primates have a ‘red-green’ chromatic channel in addition to luminance and ‘blue-yellow’ channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations
    corecore