17 research outputs found

    Segregation of object and background motion in the retina

    Get PDF
    An important task in vision is to detect objects moving within a stationary scene. During normal viewing this is complicated by the presence of eye movements that continually scan the image across the retina, even during fixation. To detect moving objects, the brain must distinguish local motion within the scene from the global retinal image drift due to fixational eye movements. We have found that this process begins in the retina: a subset of retinal ganglion cells responds to motion in the receptive field centre, but only if the wider surround moves with a different trajectory. This selectivity for differential motion is independent of direction, and can be explained by a model of retinal circuitry that invokes pooling over nonlinear interneurons. The suppression by global image motion is probably mediated by polyaxonal, wide-field amacrine cells with transient responses. We show how a population of ganglion cells selective for differential motion can rapidly flag moving objects, and even segregate multiple moving objects

    Visual Localization and Eye Movements

    No full text

    Role of cerebellum in motion perception and vestibulo-ocular reflex-similarities and disparities

    Full text link
    Vestibular velocity storage enhances the efficacy of the angular vestibulo-ocular reflex (VOR) during relatively low-frequency head rotations. This function is modulated by GABA-mediated inhibitory cerebellar projections. Velocity storage also exists in perceptual pathway and has similar functional principles as VOR. However, it is not known whether the neural substrate for perception and VOR overlap. We propose two possibilities. First, there is the same velocity storage for both VOR and perception; second, there are nonoverlapping neural networks: one might be involved in perception and the other for the VOR. We investigated these possibilities by measuring VOR and perceptual responses in healthy human subjects during whole-body, constant-velocity rotation steps about all three dimensions (yaw, pitch, and roll) before and after 10 mg of 4-aminopyridine (4-AP). 4-AP, a selective blocker of inward rectifier potassium conductance, can lead to increased synchronization and precision of Purkinje neuron discharge and possibly enhance the GABAergic action. Hence 4-AP could reduce the decay time constant of the perceived angular velocity and VOR. We found that 4-AP reduced the decay time constant, but the amount of reduction in the two processes, perception and VOR, was not the same, suggesting the possibility of nonoverlapping or partially overlapping neural substrates for VOR and perception. We also noted that, unlike the VOR, the perceived angular velocity gradually built up and plateau prior to decay. Hence, the perception pathway may have additional mechanism that changes the dynamics of perceived angular velocity beyond the velocity storage. 4-AP had no effects on the duration of build-up of perceived angular velocity, suggesting that the higher order processing of perception, beyond the velocity storage, might not occur under the influence of mechanism that could be influenced by 4-AP

    Bilateral otolith contribution to spatial coding in the vestibular system.

    No full text
    Recent work on the coding of spatial information in central otolith neurons has significantly advanced our knowledge of signal transformation from head-fixed otolith coordinates to space-centered coordinates during motion. In this review, emphasis is placed on the neural mechanisms by which signals generated at the bilateral labyrinths are recognized as gravity-dependent spatial information and in turn as substrate for otolithic reflexes. We first focus on the spatiotemporal neuronal response patterns (i.e. one- and two-dimensional neurons) to pure otolith stimulation, as assessed by single unit recording from the vestibular nucleus in labyrinth-intact animals. These spatiotemporal features are also analyzed in association with other electrophysiological properties to evaluate their role in the central construction of a spatial frame of reference in the otolith system. Data derived from animals with elimination of inputs from one labyrinth then provide evidence that during vestibular stimulation signals arising from a single utricle are operative at the level of both the ipsilateral and contralateral vestibular nuclei. Hemilabyrinthectomy also revealed neural asymmetries in spontaneous activity, response dynamics and spatial coding behavior between neuronal subpopulations on the two sides and as a result suggested a segregation of otolith signals reaching the ipsilateral and contralateral vestibular nuclei. Recent studies have confirmed and extended previous observations that the recovery of resting activity within the vestibular nuclear complex during vestibular compensation is related to changes in both intrinsic membrane properties and capacities to respond to extracellular factors. The bilateral imbalance provides the basis for deranged spatial coding and motor deficits accompanying hemilabyrinthectomy. Taken together, these experimental findings indicate that in the normal state converging inputs from bilateral vestibular labyrinths are essential to spatiotemporal signal transformation at the central otolith neurons during low-frequency head movements. Copyright 2002 National Science Council, ROC and S. Karger AG, Basellink_to_subscribed_fulltex
    corecore