7 research outputs found

    Utilization of Glycerol from Biodiesel Industry By-Product into Several Higher Value Product

    Get PDF
    Since the 1980s the energy demand has been increasing steadily, including diesel fuel. On the other hand the oil reserve in the world was increasingly limited because of being the product that could not be renewed. Therefore, effort was carried out to look for the alternative fuel that could be renewed and environment friendly. The alternative energy from new renewable energy is a solution to reduce the dependence of fossil energy. The renewable energy consists of the energy of water, wind, biomass or biofuels, solar energy, ocean energy, and geothermal energy. One of the biofuels is biodiesel. Biodiesel is diesel fuel which is made from vegetable oil by transesterification. The abundance of glycerol will result in declining sales value of glycerol as a by-product of the biodiesel plant. It should be anticipated to improve the usefulness of glycerol both in terms of quantity and its variants. The increasing usefulness of glycerol will result in the higher price of glycerol that will increase the profitability of biodiesel plants. Among the usefulness of glycerol investigated is as an ingredient in pharmaceutical products, polyether, emulsifiers, fabric softener, stabilizers, preservatives in bread, ice cream, cosmetic ingredients, a propellant binder, and others. This chapter explains the utilization of glycerol to produce triacetin as bioadditive and polyglycidyl nitrate (PGN) as a propellant binder. Triacetin is used to increase octane number of fuel and improve the biodiesel’s performance. Propellant binder consists of two kinds of non-energetic polymers and polymer energetic. The most energetic polymer is PGN. The focus of this chapter is to determine each step of reactions, operating conditions of process and the results of products

    Fast ion transport by sawtooth instability in the presence of ICRF-NBI synergy in JET plasmas

    No full text
    JET experiments have shown that the three-ion scenarios using waves in the ion cyclotron range of frequencies (ICRF) is an efficient way to build fast ion population through beam ion acceleration by radio frequency (RF) waves. Such a heating scheme is applied to plasmas with at least two thermal ion species. Analysis of mixed discharges with complex heating schemes requires a workflow that allows to model thermal and fast ion transport consistently. This paper is dedicated to modelling of a mixed plasma discharge with significant fraction of fast ions and contributes to development of fast ion transport models. For interpretive analysis with the TRANSP code a JET hydrogen-deuterium plasma discharge with neutral beam injection (NBI) and ICRF heating has been chosen. The task is complicated by NBI-ICRF synergy and plasma magnetohydrodynamic activity, like sawtooth crashes. D beam ions accelerated by RF waves form a high energy tail in fast ion distribution. Significant difference between the neutron rate computed by TRANSP and measured one is observed if the same diffusivity for electrons and ions is assumed. Sensitivity studies show that uncertainties in input plasma parameters and thermal ion transport models are crucial for modelling mixed plasma discharges and increased D transport is required to reach the plasma composition consistent with diagnostic measurements at the plasma edge. Fast ion redistribution by a sawtooth instability is characterised by non-resonant transport due to reconnection of magnetic field lines and resonant transport caused by resonance interaction between the instability and fast ions. With ORBIT simulations it has been shown that resonant interaction strongly affects fast ions of high energies, like beam ions accelerated by RF waves and fusion products. For the considered case, fast ion profiles simulated by ORBIT remain peaked after the sawtooth crashes
    corecore