38 research outputs found

    Topological Photonics

    Get PDF
    Topology is revolutionizing photonics, bringing with it new theoretical discoveries and a wealth of potential applications. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation even in the presence of impurities. Similarly, new optical mirrors of different wave-vector space topologies have been constructed to support new states of light propagating at their interfaces. These novel waveguides allow light to flow around large imperfections without back-reflection. The present review explains the underlying principles and highlights the major findings in photonic crystals, coupled resonators, metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1 tabl

    Relativistic Binaries in Globular Clusters

    Get PDF
    Galactic globular clusters are old, dense star systems typically containing 10\super{4}--10\super{7} stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of hard binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct {\it N}-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl

    The future of saliva as an analytical sample

    No full text
    Saliva has gained attention in research mainly because of the noninvasive way in which the samples are obtained, allowing repeated sampling even in very susceptible populations such as children. Moreover, increasing scientific evidence confirms and highlights the potential of saliva as an analytical sample in application to both local and systemic diseases. Several aspects of saliva have been studied in the search of biomarkers for a broad range of disease conditions. Likewise, different techniques have been used, from simple evaluation of salivary flow and colorimetry to more complex omics approaches. However, saliva is still little used in clinical settings, and the main reasons for this are reviewed in this chapter

    A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation

    No full text
    The emerging field of nanophotonics1 addresses the critical challenge of manipulating light on scales much smaller than the wavelength. However, very few feasible practical approaches exist at present. Surface plasmon polaritons2, 3 are among the most promising candidates for subwavelength optical confinement3, 4, 5, 6, 7, 8, 9, 10. However, studies of long-range surface plasmon polaritons have only demonstrated optical confinement comparable to that of conventional dielectric waveguides, because of practical issues including optical losses and stringent fabrication demands3, 11, 12, 13. Here, we propose a new approach that integrates dielectric waveguiding with plasmonics. The hybrid optical waveguide consists of a dielectric nanowire separated from a metal surface by a nanoscale dielectric gap. The coupling between the plasmonic and waveguide modes across the gap enables 'capacitor-like' energy storage that allows effective subwavelength transmission in non-metallic regions. In this way, surface plasmon polaritons can travel over large distances (40–150 microm) with strong mode confinement (ranging from lambda2/400 to lambda2/40). This approach is fully compatible with semiconductor fabrication techniques and could lead to truly nanoscale semiconductor-based plasmonics and photonics
    corecore