3 research outputs found

    Polycyclic Aromatic Hydrocarbon Baselines in Gulf of Mexico Fishes

    No full text
    The lack of baseline data has hindered the assessment of impacts from large-scale oil spills throughout their history. Baseline data collected before an adverse event such as an oil spill are critical for quantifying impacts and understanding recovery rates to pre-spill levels. In the case of the two largest oil spills in the Gulf of Mexico (GoM), Deepwater Horizon and Ixtoc 1, the lack of comprehensive contaminant baselines limits our ability to project when the ecosystem will return to pre-spill conditions and assess the short- and long-term impacts of contamination on ecosystems. Beginning in 2011, we initiated comprehensive sampling in the GoM to develop broad-scale and Gulf-wide hydrocarbon contaminant baselines primarily targeting continental shelf fishes in the USA, Mexico, and Cuba. We also developed a time series of collections over 7 years from the region in which DWH occurred. In the event there is another oil spill in the GoM, the samples from these baselines will provide broad-scale but not installation-specific baseline information for the assessment of impact and recovery. This chapter provides a summary of historical sampling and current baseline data for pelagic, mesopelagic, and demersal fish in the GoM. Further, we outline the importance of ongoing and more specific collection of monitoring data for hydrocarbon pollution

    Hepatobiliary Analyses Suggest Chronic PAH Exposurein Hakes (\u3cem\u3eUrophycis\u3c/em\u3e spp.) Following the \u3cem\u3eDeepwater Horizon\u3c/em\u3e Oil Spill

    Get PDF
    Prior to theDeepwater Horizon oil spill, we lacked a comprehensive baseline of oil contamination in the Gulf of Mexico’s sediments, water column, and biota. Gaps in prespill knowledge limit our ability to determine the aftereffects of the Deepwater Horizon blowout or prepare to mitigate similar impacts during future oil spill disasters. We examined spatio temporal differences in exposure to and metabolism of polycyclic aromatic hydrocarbons (PAHs) in 2 hake species (Urophycis spp.)to establish a current baseline for these ecologically important, abundant, and at‐risk demersal fishes. Gulf hake (Urophycis cirrata) and southern hake (Urophycis floridana) were collected throughout the Gulf of Mexico during extensive longline surveys from2012 to 2015. Analyses of biliary PAH metabolites and liver PAH concentrations provided evidence of exposures to di‐and tricyclic compounds, with the highest concentrations measured in the northern Gulf of Mexico. Species‐specific differences were not detected, but temporal trends observed in biliary PAHs suggest a decrease in acute exposures, whereas increasing liver PAHs suggest chronic exposures marked by greater assimilation than metabolism rates. To our knowledge, the present study provides the first multitissue contaminant analyses, as well as the most exhaustive biometric analyses, for both gulf and southern hakes.Though sources of exposure are complex because of multiple natural and anthropogenic PAH inputs, these results will facilitate the development of much needed health metrics for Gulf of Mexico benthos. Environ Toxicol Chem 2019;38:2740–2749.© 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC
    corecore