2 research outputs found
Finite Element Investigation of Effective Moduli of Transversely Isotropic Thermoelastic Materials with Nanoscale Porosity
Using the methods of effective moduli and finite elements, the effective properties of nanoporous thermoelastic transversely isotropic materials were studied for simple random and for closed structures of porosity. Nanoscale effects were modelled in the framework of the Gurtin-Murdoch model of interface stresses and of the high conductivity model. The modelling and solution of homogenization problems was performed in the ANSYS package, while structures of representative volumes with closed porosity were created in the ACELAN-COMPOS package. The effect of porosity, types of representative volumes and pore sizes on the values of the effective modules of nanoporous titanium is analysed. © 2020, Springer Nature Switzerland AG
Homogenization of Dispersion-Strengthened Thermoelastic Composites with Imperfect Interfaces by Using Finite Element Technique
The paper describes the homogenization procedure for a two-phase mixture composite that consists of two isotropic thermoelastic materials. It is assumed that the special interface conditions are held on the boundary between the phases, where the stress and the thermal flux jump over the interphase boundary are equal to the surface stresses and thermal flux at the interface. Such boundary conditions are used to describe the nanoscale effects in thermoelastic nanodimensional bodies and nanocomposites. The homogenization problems are solved using the approach of the effective moduli method, the finite element method and the algorithm for generating the representative volume of cubic finite elements with random distribution of element material properties. As a numerical example, a mixture wolfram-copper composite is considered, where the interface conditions are simulated by surface membrane and thermal shell elements