17 research outputs found
Shape-resonant superconductivity in nanofilms: from weak to strong coupling
Ultrathin superconductors of different materials are becoming a powerful
platform to find mechanisms for enhancement of superconductivity, exploiting
shape resonances in different superconducting properties. Here we evaluate the
superconducting gap and its spatial profile, the multiple gap components, and
the chemical potential, of generic superconducting nanofilms, considering the
pairing attraction and its energy scale as tunable parameters, from weak to
strong coupling, at fixed electron density. Superconducting properties are
evaluated at mean field level as a function of the thickness of the nanofilm,
in order to characterize the shape resonances in the superconducting gap. We
find that the most pronounced shape resonances are generated for weakly coupled
superconductors, while approaching the strong coupling regime the shape
resonances are rounded by a mixing of the subbands due to the large energy gaps
extending over large energy scales. Finally, we find that the spatial profile,
transverse to the nanofilm, of the superconducting gap acquires a flat behavior
in the shape resonance region, indicating that a robust and uniform multigap
superconducting state can arise at resonance.Comment: 7 pages, 4 figures. Submitted to the Proceedings of the Superstripes
2016 conferenc
Towards an understanding of hole superconductivity
From the very beginning K. Alex M\"uller emphasized that the materials he and
George Bednorz discovered in 1986 were superconductors. Here I would
like to share with him and others what I believe to be key reason for why
high cuprates as well as all other superconductors are hole
superconductors, which I only came to understand a few months ago. This paper
is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday.
arXiv admin note: text overlap with arXiv:1703.0977
Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates
In strongly-correlated systems the electronic properties at the Fermi energy (EF) are intertwined with those at high energy scales. One of the pivotal challenges in the field of high-temperature superconductivity (HTSC) is to understand whether and how the high energy scale physics associated with Mott-like excitations (|E-EF|>1 eV) is involved in the condensate formation. Here we show the interplay between the many-body high-energy CuO2 excitations at 1.5 and 2 eV and the onset of HTSC. This is revealed by a novel optical pump supercontinuum-probe technique, which provides access to the dynamics of the dielectric function in Y-Bi2212 over an extended energy range, after the photoinduced suppression of the superconducting pairing. These results unveil an unconventional mechanism at the base of HTSC both below and above the optimal hole concentration required to attain the maximum critical temperature (Tc)
Identifying the ‘fingerprint’ of antiferromagnetic spin fluctuations in iron pnictide superconductors
Cooper pairing in the iron-based high-T-c superconductors(1-3) is often conjectured to involve bosonic fluctuations. Among the candidates are antiferromagnetic spin fluctuations(1,4,5) and d-orbital fluctuations amplified by phonons(6,7). Any such electron-boson interaction should alter the electron's 'self-energy', and then become detectable through consequent modifications in the energy dependence of the electron's momentum and lifetime(8-10). Here we introduce a novel theoretical/experimental approach aimed at uniquely identifying the relevant fluctuations of iron-based superconductors by measuring effects of their self-energy. We use innovative quasiparticle interference (QPI) imaging(11) techniques in LiFeAs to reveal strongly momentum-space anisotropic self-energy signatures that are focused along the Fe-Fe (interband scattering) direction, where the spin fluctuations of LiFeAs are concentrated. These effects coincide in energy with perturbations to the density of states N(omega) usually associated with the Cooper pairing interaction. We show that all the measured phenomena comprise the predicted QPI 'fingerprint' of a self-energy due to antiferromagnetic spin fluctuations, thereby distinguishing them as the predominant electron-boson interaction