19 research outputs found

    A coherent picture of water at extreme negative pressure.

    Get PDF
    International audienceLiquid water at atmospheric pressure can be supercooled to 41 C (ref. 1) and superheated to C302 C (ref. 2). Experiments involving fluid inclusions of water in quartz suggest that water is capable of sustaining pressures as low as 140 MPa before it breaks by cavitation3. Other techniques, for which cavitation occurs consistently at around 30MPa (ref. 4), produce results that cast doubt on this claim. Here we reproduce the fluid-inclusion experiment, performing repeated measurements on a single sample--a method used in meteorology5, bioprotection6 and protein crystallization7, but not yet in liquid water under large mechanical tension. The resulting cavitation statistics are characteristic of a thermally activated process, and both the free energy and the volume of the critical bubble are well described by classical nucleation theory when the surface tension is reduced by less than 10%, consistent with homogeneous cavitation. The line of density maxima of water at negative pressure is found to reach 922:8 kgm3 at around 300 K, which further constrains its contested phase diagram

    Structural determinants of microtubule minus end preference in CAMSAP CKK domains

    Get PDF
    CAMSAP/Patronins regulate microtubule minus-end dynamics. Their end specificity is mediated by their CKK domains, which we proposed recognise specific tubulin conformations found at minus ends. To critically test this idea, we compared the human CAMSAP1 CKK domain (HsCKK) with a CKK domain from Naegleria gruberi (NgCKK), which lacks minus-end specificity. Here we report near-atomic cryo-electron microscopy structures of HsCKK- and NgCKK-microtubule complexes, which show that these CKK domains share the same protein fold, bind at the intradimer interprotofilament tubulin junction, but exhibit different footprints on microtubules. NMR experiments show that both HsCKK and NgCKK are remarkably rigid. However, whereas NgCKK binding does not alter the microtubule architecture, HsCKK remodels its microtubule interaction site and changes the underlying polymer structure because the tubulin lattice conformation is not optimal for its binding. Thus, in contrast to many MAPs, the HsCKK domain can differentiate subtly specific tubulin conformations to enable microtubule minus-end recognition
    corecore