31 research outputs found
Hot Jupiters from Secular Planet--Planet Interactions
About 25 per cent of `hot Jupiters' (extrasolar Jovian-mass planets with
close-in orbits) are actually orbiting counter to the spin direction of the
star. Perturbations from a distant binary star companion can produce high
inclinations, but cannot explain orbits that are retrograde with respect to the
total angular momentum of the system. Such orbits in a stellar context can be
produced through secular (that is, long term) perturbations in hierarchical
triple-star systems. Here we report a similar analysis of planetary bodies,
including both octupole-order effects and tidal friction, and find that we can
produce hot Jupiters in orbits that are retrograde with respect to the total
angular momentum. With distant stellar mass perturbers, such an outcome is not
possible. With planetary perturbers, the inner orbit's angular momentum
component parallel to the total angular momentum need not be constant. In fact,
as we show here, it can even change sign, leading to a retrograde orbit. A
brief excursion to very high eccentricity during the chaotic evolution of the
inner orbit allows planet-star tidal interactions to rapidly circularize that
orbit, decoupling the planets and forming a retrograde hot Jupiter.Comment: accepted for publication by Nature, 3 figures (version after proof -
some typos corrected
Systematic evaluation of immune regulation and modulation
Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers
Meiobenthos of the Oxic/Anoxic Interface in the Southwestern Region of the Black Sea: Abundance and Taxonomic Composition
The Black Sea contains the World’s largest body of anoxic water. Based on new and published data, we describe trends among selected protozoan and metazoan meiofaunal taxa at water depths of 120–240 m in the northwestern part of the Black Sea near the submarine Dnieper Canyon. This transect spans the transition between increasingly hypoxic but non-sulfidic bottom water and the deeper anoxic/sulfidic zone, the boundary between these two domains being located at approximately 150–180 m depth. This transition zone supports a rich rose-Bengal-stained fauna. Among the protozoans, gromiids are common only at 120 and 130 m. All other groups exhibit more or less distinct abundance maxima near the base of the hypoxic zone. Foraminifera peak sharply at ?160 m while ciliates are most abundant at 120, 160–190, and 240 m, where they are possibly associated with concentrations of bacterial cells. The three most abundant metazoan taxa also exhibit maxima in the hypoxic zone, the nematodes and polychaetes at 160 m, and the harpacticoid copepods at 150 m. Most of the polychaetes belong to two species, Protodrilus sp. and Vigtorniella zaikai, the larvae of which are widely distributed in severely hypoxic water just above the anoxic/sulfidic zone of the Black Sea. Both protozoans and metazoans are usually concentrated in the 0–1 cm layer of the sediment, except at the shallowest (120–130 m) site where deeper layers may yield a substantial proportion of the assemblage. The concentration of nematodes in the 3–5 cm layer at 120 m is particularly notable. Our data suggest that some benthic species can tolerate anoxic/sulfidic conditions in the Black Sea. An important caveat is that anoxia or severe hypoxia may lead to the corpses of nonindigenous organisms being preserved in our samples. However, we argue that the morphological integrity of specimens, the high population densities (associated with high bacterial concentrations in the case of ciliates), the presence of taxa often found in hypoxic settings, and the presence of all life stages (including gravid females) among nematodes and harpacticoids, suggests that at least some of the organisms are indigenous. Further comparative studies of shallow- and deep-water meiobenthic communities in the Black Sea are necessary in order to establish which species are characteristic and indicative of hypoxic/anoxic conditions