7 research outputs found

    Electrically-driven phase transition in magnetite nanostructures

    Full text link
    Magnetite (Fe3_{3}O4_{4}), an archetypal transition metal oxide, has been used for thousands of years, from lodestones in primitive compasses[1] to a candidate material for magnetoelectronic devices.[2] In 1939 Verwey[3] found that bulk magnetite undergoes a transition at TV_{V} \approx 120 K from a high temperature "bad metal" conducting phase to a low-temperature insulating phase. He suggested[4] that high temperature conduction is via the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering upon cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial.[5-11] Here we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound.Comment: 17 pages, 4 figure

    The effect of environment on Type Ia supernovae in the Dark Energy Survey three-year cosmological sample

    Get PDF
    Analyses of Type Ia supernovae (SNe Ia) have found puzzling correlations between their standardized luminosities and host galaxy properties: SNe Ia in high-mass, passive hosts appear brighter than those in lower mass, star-forming hosts. We examine the host galaxies of SNe Ia in the Dark Energy Survey 3-yr spectroscopically confirmed cosmological sample, obtaining photometry in a series of 'local' apertures centred on the SN, and for the global host galaxy. We study the differences in these host galaxy properties, such as stellar mass and rest-frame U - R colours, and their correlations with SN Ia parameters including Hubble residuals. We find all Hubble residual steps to be >3σ in significance, both for splitting at the traditional environmental property sample median and for the step of maximum significance. For stellar mass, we find a maximal local step of 0.098 ± 0.018 mag; ∼0.03 mag greater than the largest global stellar mass step in our sample (0.070 ± 0.017 mag). When splitting at the sample median, differences between local and global U - R steps are small, both ∼0.08 mag, but are more significant than the global stellar mass step (0.057 ± 0.017 mag). We split the data into sub-samples based on SN Ia light-curve parameters: stretch (x1) and colour (c), finding that redder objects (c > 0) have larger Hubble residual steps, for both stellar mass and U - R, for both local and global measurements, of ∼0.14 mag. Additionally, the bluer (star-forming) local environments host a more homogeneous SN Ia sample, with local U - R rms scatter as low as 0.084 ± 0.017 mag for blue (c < 0) SNe Ia in locally blue U - R environments

    Constraints on the Physical Properties of GW190814 through Simulations Based on DECam Follow-up Observations by the Dark Energy Survey

    Get PDF
    On 2019 August 14, the LIGO and Virgo Collaborations detected gravitational waves from a black hole and a 2.6 solar mass compact object, possibly the first neutron star–black hole merger. In search of an optical counterpart, the Dark Energy Survey (DES) obtained deep imaging of the entire 90% confidence level localization area with Blanco/DECam 0, 1, 2, 3, 6, and 16 nights after the merger. Objects with varying brightness were detected by the DES Pipeline, and we systematically reduced the candidate counterparts through catalog matching, light-curve properties, host-galaxy photometric redshifts, Southern Astrophysical Research spectroscopic follow-up observations, and machine-learning-based photometric classification. All candidates were rejected as counterparts to the merger. To quantify the sensitivity of our search, we applied our selection criteria to full light-curve simulations of supernovae and kilonovae as they would appear in the DECam observations. Because the source class of the merger was uncertain, we utilized an agnostic, three-component kilonova model based on tidally disrupted neutron star (NS) ejecta properties to quantify our detection efficiency of a counterpart if the merger included an NS. We find that, if a kilonova occurred during this merger, configurations where the ejected matter is greater than 0.07 solar masses, has lanthanide abundance less than 10−8.56, and has a velocity between 0.18c and 0.21c are disfavored at the 2σ level. Furthermore, we estimate that our background reduction methods are capable of associating gravitational wave signals with a detected electromagnetic counterpart at the 4σ level in 95% of future follow-up observations
    corecore