10 research outputs found

    Thalidomide-Related Eosinophilic Pneumonia: A case report and brief literature review

    Get PDF
    Thalidomide has regained value in the multimodality treatment of leprosy, multiple myeloma, prostate, ovarian and renal cancer. Complications related to arterial and venous complications are well described. However, pulmonary complications remain relatively uncommon. The most common pulmonary side-effect reported is non-specific dyspnea. We report a patient with multiple myeloma, who developed an eosinophilic pneumonia, shortly after starting thalidomide. She had complete resolution of her symptoms and pulmonary infiltrates on discontinuation of the drug and treatment with corticosteroids. Physicians should be cognizant of this potential complication in patients receiving thalidomide who present with dyspnea and pulmonary infiltrates

    Dissociation of CAK from Core TFIIH Reveals a Functional Link between XP-G/CS and the TFIIH Disassembly State

    Get PDF
    Transcription factor II H (TFIIH) is comprised of core TFIIH and Cdk-activating kinase (CAK) complexes. Here, we investigated the molecular and cellular manifestation of the TFIIH compositional changes by XPG truncation mutations. We showed that both core TFIIH and CAK are rapidly recruited to damage sites in repair-proficient cells. Chromatin immunoprecipitation against TFIIH and CAK components revealed a physical engagement of CAK in nucleotide excision repair (NER). While XPD recruitment to DNA damage was normal, CAK was not recruited in severe XP-G and XP-G/CS cells, indicating that the associations of CAK and XPD to core TFIIH are differentially affected. A CAK inhibition approach showed that CAK activity is not required for assembling pre-incision machinery in vivo or for removing genomic photolesions. Instead, CAK is involved in Ser5-phosphorylation and UV-induced degradation of RNA polymerase II. The CAK inhibition impaired transcription from undamaged and UV-damaged reporter, and partially decreased transcription of p53-dependent genes. The overall results demonstrated that a) XP-G/CS mutations affect the disassembly state of TFIIH resulting in the dissociation of CAK, but not XPD from core TFIIH, and b) CAK activity is not essential for global genomic repair but involved in general transcription and damage-induced RNA polymerase II degradation
    corecore