7 research outputs found

    Identification of two new mutations in the GPR98 and the PDE6B genes segregating in a Tunisian family

    No full text
    Autosomal recessive retinitis pigmentosa (ARRP) is a genetically heterogeneous disorder. ARRP could be associated with extraocular manifestations that define specific syndromes such as Usher syndrome (USH) characterized by retinal degeneration and congenital hearing loss (HL). The USH type II (USH2) associates RP and mild-to-moderate HL with preserved vestibular function. At least three genes USH2A, the very large G-protein-coupled receptor, GPR98, and DFNB31 are responsible for USH2 syndrome. Here, we report on the segregation of non-syndromic ARRP and USH2 syndrome in a consanguineous Tunisian family, which was previously used to define USH2B locus. With regard to the co-occurrence of these two different pathologies, clinical and genetic reanalysis of the extended family showed (i) phenotypic heterogeneity within USH2 patients and (ii) excluded linkage to USH2B locus. Indeed, linkage analysis disclosed the cosegregation of the USH2 phenotype with the USH2C locus markers, D5S428 and D5S618, whereas the ARRP perfectly segregates with PDE6B flanking markers D4S3360 and D4S2930. Molecular analysis revealed two new missense mutations, p.Y6044C and p.W807R, occurring in GPR98 and PDE6B genes, respectively. In conclusion, our results show that the USH2B locus at chromosome 3p23–24.2 does not exist, and we therefore withdraw this locus designation. The combination of molecular findings for GPR98 and PDE6B genes enable us to explain the phenotypic heterogeneity and particularly the severe ocular affection first observed in one USH2 patient. This report presents an illustration of how consanguinity could increase familial clustering of multiple hereditary diseases within the same family

    Effects of ingesting a pre-workout dietary supplement with and without synephrine for 8 weeks on training adaptations in resistance-trained males

    No full text
    BACKGROUND: The purpose of this study was to examine whether ingesting a pre-workout dietary supplement (PWS) with and without synephrine (S) during training affects training responses in resistance-trained males. METHODS: Resistance-trained males (N = 80) were randomly assigned to supplement their diet in a double-blind manner with either a flavored placebo (PLA); a PWS containing beta-alanine (3 g), creatine nitrate as a salt (2 g), arginine alpha-ketoglutarate (2 g), N-Acetyl-L-Tyrosine (300 mg), caffeine (284 mg), Mucuna pruiriens extract standardized for 15% L-Dopa (15 mg), Vitamin C as Ascorbic Acid (500 mg), niacin (60 mg), folate as folic acid (50 mg), and Vitamin B12 as Methylcobalamin (70 mg); or, the PWS supplement with Citrus aurantium extract containing 20 mg of synephrine (PWS + S) once per day for 8-weeks during training. Participants donated a fasting blood sample and had body composition (DXA), resting heart rate and blood pressure, cognitive function (Stroop Test), readiness to perform, bench and leg press 1 RM, and Wingate anaerobic capacity assessments determined a 0, 4, and 8-weeks of standardized training. Data were analyzed by MANOVA with repeated measures. Performance and cognitive function data were analyzed using baseline values as covariates as well as mean changes from baseline with 95% confidence intervals (CI). Blood chemistry data were also analyzed using Chi-square analysis. RESULTS: Although significant time effects were seen, no statistically significant overall MANOVA Wilks’ Lambda interactions were observed among groups for body composition, resting heart and blood pressure, readiness to perform questions, 1RM strength, anaerobic sprint capacity, or blood chemistry panels. MANOVA univariate analysis and analysis of changes from baseline with 95% CI revealed some evidence that cognitive function and 1RM strength were increased to a greater degree in the PWS and/or PWS + S groups after 4- and/or 8-weeks compared to PLA responses. However, there was no evidence that PWS + S promoted greater overall training adaptations compared to the PWS group. Dietary supplementation of PWS and PWS + S did not increase the incidence of reported side effects or significantly affect the number of blood values above clinical norms compared to PLA. CONCLUSION: Results provide some evidence that 4-weeks of PWS and/or PWS + S supplementation can improve some indices of cognitive function and exercise performance during resistance-training without significant side effects in apparently health males. However, these effects were similar to PLA responses after 8-weeks of supplementation and inclusion of synephrine did not promote additive benefits. TRIAL REGISTRATION: This trial (NCT02999581) was retrospectively registered on December 16th 2016

    PROTACs: great opportunities for academia and industry

    No full text
    corecore