23 research outputs found

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN

    Phenotypic variation in shell form in the intertidal acorn barnacle Chthamalus montagui: distribution, response to predators and life history trade-offs

    No full text
    The acorn barnacle Chthamalus montagui can present strong variation in shell morphology, ranging from flat conic to a highly bent form, caused by a substantial overgrowth of the rostrum plate. Shell shape distribution was investigated between January and May 2004 from geographical to microhabitat spatial scales along the western coast of Britain. Populations studied in the north (Scotland and Isle of Man) showed a higher degree of shell variation compared to those in the south (Wales and south-west England). In the north, C. montagui living at lower tidal levels and in proximity to the predatory dogwhelk, Nucella lapillus, were more bent in profile. Laboratory experiments were conducted to examine behavioural responses, and vulnerability of bent and conic barnacles to predation by N. lapillus. Dogwhelks did not attack one morphotype more than the other, but only 15 % of attacks on bent forms were successful compared to 75 % in conic forms. Dogwhelk effluent reduced the time spent feeding by C. montagui (11 %), but there was no significant difference between conic and bent forms. Examination of barnacle morphology indicated a trade-off in investment in shell structure and feeding appendages associated with being bent, but none with egg or somatic tissue mass. These results are consistent with C. montagui showing an induced defence comparable to that found in its congeners Chthamalus anisopoma and Chthamalus fissus on the Pacific coast of North America, but further work to demonstrate inducibility is required
    corecore