4,978 research outputs found
Gauge invariant definition of the jet quenching parameter
In the framework of Soft-Collinear Effective Theory, the jet quenching
parameter, , has been evaluated by adding the effect of Glauber gluon
interactions to the propagation of a highly-energetic collinear parton in a
medium. The result, which holds in covariant gauges, has been expressed in
terms of the expectation value of two Wilson lines stretching along the
direction of the four-momentum of the parton. In this paper, we show how that
expression can be generalized to an arbitrary gauge by the addition of
transverse Wilson lines. The transverse Wilson lines are explicitly computed by
resumming interactions of the parton with Glauber gluons that appear only in
non-covariant gauges. As an application of our result, we discuss the
contribution to coming from transverse momenta of order in a
medium that is a weakly-coupled quark-gluon plasma.Comment: 31 pages, 7 figures; journal versio
TMS-evoked EEG potentials demonstrate altered cortical excitability in migraine with aura
Migraine is associated with altered sensory processing, that may be evident as changes in cortical responsivity due to altered excitability, especially in migraine with aura. Cortical excitability can be directly assessed by combining transcranial magnetic stimulation with electroencephalography (TMS-EEG). We measured TMS evoked potential (TEP) amplitude and response consistency as these measures have been linked to cortical excitability but were not yet reported in migraine. We recorded 64-channel EEG during single-pulse TMS on the vertex interictally in 10 people with migraine with aura and 10 healthy controls matched for age, sex and resting motor threshold. On average 160 pulses around resting motor threshold were delivered through a circular coil in clockwise and counterclockwise direction. Trial-averaged TEP responses, frequency spectra and phase clustering (over the entire scalp as well as in frontal, central and occipital midline electrode clusters) were compared between groups, including comparison to sham-stimulation evoked responses. Migraine and control groups had a similar distribution of TEP waveforms over the scalp. In migraine with aura, TEP responses showed reduced amplitude around the frontal and occipital N100 peaks. For the migraine and control groups, responses over the scalp were affected by current direction for the primary motor cortex, somatosensory cortex and sensory association areas, but not for frontal, central or occipital midline clusters. This study provides evidence of altered TEP responses in-between attacks in migraine with aura. Decreased TEP responses around the N100 peak may be indicative of reduced cortical GABA-mediated inhibition and expand observations on enhanced cortical excitability from earlier migraine studies using more indirect measurements
Conformal invariance in two-dimensional turbulence
Simplicity of fundamental physical laws manifests itself in fundamental
symmetries. While systems with an infinity of strongly interacting degrees of
freedom (in particle physics and critical phenomena) are hard to describe, they
often demonstrate symmetries, in particular scale invariance. In two dimensions
(2d) locality often promotes scale invariance to a wider class of conformal
transformations which allow for nonuniform re-scaling. Conformal invariance
allows a thorough classification of universality classes of critical phenomena
in 2d. Is there conformal invariance in 2d turbulence, a paradigmatic example
of strongly-interacting non-equilibrium system? Here, using numerical
experiment, we show that some features of 2d inverse turbulent cascade display
conformal invariance. We observe that the statistics of vorticity clusters is
remarkably close to that of critical percolation, one of the simplest
universality classes of critical phenomena. These results represent a new step
in the unification of 2d physics within the framework of conformal symmetry.Comment: 10 pages, 5 figures, 1 tabl
Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure
The spin-orbit interaction affects the electronic structure of solids in
various ways. Topological insulators are one example where the spin-orbit
interaction leads the bulk bands to have a non-trivial topology, observable as
gapless surface or edge states. Another example is the Rashba effect, which
lifts the electron-spin degeneracy as a consequence of spin-orbit interaction
under broken inversion symmetry. It is of particular importance to know how
these two effects, i.e. the non-trivial topology of electronic states and
Rashba spin splitting, interplay with each other. Here we show, through
sophisticated first-principles calculations, that BiTeI, a giant bulk Rashba
semiconductor, turns into a topological insulator under a reasonable pressure.
This material is shown to exhibit several unique features such as, a highly
pressure-tunable giant Rashba spin splitting, an unusual pressure-induced
quantum phase transition, and more importantly the formation of strikingly
different Dirac surface states at opposite sides of the material.Comment: 5 figures are include
Spin Caloritronics
This is a brief overview of the state of the art of spin caloritronics, the
science and technology of controlling heat currents by the electron spin degree
of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh,
S. Valenzuela and Y. Kimura, Oxford University Pres
Fragment Flow and the Nuclear Equation of State
We use the Boltzmann-Uehling-Uhlenbeck model with a momentum-dependent
nuclear mean field to simulate the dynamical evolution of heavy ion collisions.
We re-examine the azimuthal anisotropy observable, proposed as sensitive to the
equation of state of nuclear matter. We obtain that this sensitivity is maximal
when the azimuthal anisotropy is calculated for nuclear composite fragments, in
agreement with some previous calculations. As a test case we concentrate on
semi-central collisions at 400 MeV.Comment: 12 pages, ReVTeX 3.0. 12 Postscript figures, uuencoded and appende
Performance Analysis of Effective Methods for Solving Band Matrix SLAEs after Parabolic Nonlinear PDEs
This paper presents an experimental performance study of implementations of
three different types of algorithms for solving band matrix systems of linear
algebraic equations (SLAEs) after parabolic nonlinear partial differential
equations -- direct, symbolic, and iterative, the former two of which were
introduced in Veneva and Ayriyan (arXiv:1710.00428v2). An iterative algorithm
is presented -- the strongly implicit procedure (SIP), also known as the Stone
method. This method uses the incomplete LU (ILU(0)) decomposition. An
application of the Hotelling-Bodewig iterative algorithm is suggested as a
replacement of the standard forward-backward substitutions. The upsides and the
downsides of the SIP method are discussed. The complexity of all the
investigated methods is presented. Performance analysis of the implementations
is done using the high-performance computing (HPC) clusters "HybriLIT" and
"Avitohol". To that purpose, the experimental setup and the results from the
conducted computations on the individual computer systems are presented and
discussed.Comment: 10 pages, 2 figure
Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study
Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists
Thermally driven spin injection from a ferromagnet into a non-magnetic metal
Creating, manipulating and detecting spin polarized carriers are the key
elements of spin based electronics. Most practical devices use a perpendicular
geometry in which the spin currents, describing the transport of spin angular
momentum, are accompanied by charge currents. In recent years, new sources of
pure spin currents, i.e., without charge currents, have been demonstrated and
applied. In this paper, we demonstrate a conceptually new source of pure spin
current driven by the flow of heat across a ferromagnetic/non-magnetic metal
(FM/NM) interface. This spin current is generated because the Seebeck
coefficient, which describes the generation of a voltage as a result of a
temperature gradient, is spin dependent in a ferromagnet. For a detailed study
of this new source of spins, it is measured in a non-local lateral geometry. We
developed a 3D model that describes the heat, charge and spin transport in this
geometry which allows us to quantify this process. We obtain a spin Seebeck
coefficient for Permalloy of -3.8 microvolt/Kelvin demonstrating that thermally
driven spin injection is a feasible alternative for electrical spin injection
in, for example, spin transfer torque experiments
Cross modal perception of body size in domestic dogs (Canis familiaris)
While the perception of size-related acoustic variation in animal vocalisations is well documented, little attention has been given to how this information might be integrated with corresponding visual information. Using a cross-modal design, we tested the ability of domestic dogs to match growls resynthesised to be typical of either a large or a small dog to size- matched models. Subjects looked at the size-matched model significantly more often and for a significantly longer duration than at the incorrect model, showing that they have the ability to relate information about body size from the acoustic domain to the appropriate visual category. Our study suggests that the perceptual and cognitive mechanisms at the basis of size assessment in mammals have a multisensory nature, and calls for further investigations of the multimodal processing of size information across animal species
- β¦