51 research outputs found
Enhanced Performance Dual Stage Pressure Retarded Osmosis
© 2017 The Authors. Published by Elsevier Ltd. A dual stage PRO process has been proposed for power generation from a salinity gradient across a semi-permeable membrane. Both closed-loop and open-loop dual stage PRO system were evaluated using 2 M NaCl and Dead Sea as draw solutions, whereas the feed solution was either fresh water or seawater. The impact of feed salinity gradient resource and feed pressure on the net power generation and water flux were evaluated. DSPRO can be combined with desalination plant using seawater brine as the draw solution either in closed-loop or open-loop. This hybridization has multiple applications such as reducing the impact of discharging concentrated brine to sea, energy storage, and increase the recovery rate of the desalination. Power generation by DSPRO will reduce the energy consumption by the desalination processes. Waste heat from power plants can be used for the regeneration of the draw solution in the closed-loop DSPRO. Process modelling has been performed and shown promising results for DSPRO application for power generation
Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance
© 2017 Elsevier Ltd This work proposes an analysis of conventional (single stage) and dual stage Closed-Loop Pressure Retarded Osmosis (CLPRO) for power generation from a salinity gradient resource. Model calculations were performed taking into account the influence of operating parameters such as the draw solution concentration, membrane area, and draw solution pressure on the performance of the CLPRO process. Modeling results showed that the dual stage CLPRO process outperformed the conventional CLPRO process and power generation increased 18% by adding a second stage of PRO membrane. Multi-Effect Distillation (MED) was selected for the regeneration of the draw solution taking advantage of an available source of waste heat energy. The performance of MED process has been assessed by investigating two key parameters: the specific thermal consumption and the specific heat transfer area. The model calculations showed that the power generation by the single and dual stage CLPRO was higher than the electrical power consumption by the MED plant. In the case of the power generation obtained by the dual stage CLPRO, it was 95% higher than the electrical power consumption by the MED plant, proving the possibility of using low-grade heat for producing electricity from a salinity gradient resource
Limitations of osmotic gradient resource and hydraulic pressure on the efficiency of dual stage PRO process
© 2018 Desalination Publications. All rights reserved. A dual stage PRO process has been proposed for power generation from a salinity gradient across a semi-permeable membrane. Both closed-loop and open-loop dual stage PRO system were evaluated using 2 M NaCl and Dead Sea as draw solutions, whereas the feed solution was either fresh water or seawater. The impact of feed salinity gradient resource and feed pressure on the net power generation and water flux were evaluated. The results showed that power density in stage one reached a maximum amount at ΔP = p/2, but the maximum net power generation occurred at ΔP = p/2. This result was mainly attributed to the variation of net driving pressure in stage one and two of the PRO process. The dual stage PRO process was found to perform better at high osmotic pressure gradient across the PRO membrane, for example when Dead Sea brine or highly concentrated NaCl was the draw solution. Total power generation in the dual stage PRO process was up to 40% higher than that in the conventional PRO process. This outcome was achieved through harvesting the rest of the energy remaining in the diluted draw solution. Therefore, a dual stage PRO process has the potential of maximizing power generation from a salinity gradient resource
A review of fouling mechanisms, control strategies and real-time fouling monitoring techniques in forward osmosis
© 2019 by the authors. Forward osmosis has gained tremendous attention in the field of desalination and wastewater treatment. However, membrane fouling is an inevitable issue. Membrane fouling leads to flux decline, can cause operational problems and can result in negative consequences that can damage the membrane. Hereby, we attempt to review the different types of fouling in forward osmosis, cleaning and control strategies for fouling mitigation, and the impact of membrane hydrophilicity, charge and morphology on fouling. The fundamentals of biofouling, organic, colloidal and inorganic fouling are discussed with a focus on recent studies. We also review some of the in-situ real-time online fouling monitoring technologies for real-time fouling monitoring that can be applicable to future research on forward osmosis fouling studies. A brief discussion on critical flux and the coupled effects of fouling and concentration polarization is also provided
A Chaotic Quadratic Oscillator with Only Squared Terms: Multistability, Impulsive Control, and Circuit Design
Here, a chaotic quadratic oscillator with only squared terms is proposed, which shows various dynamics. The oscillator has eight equilibrium points, and none of them is stable. Various bifurcation diagrams of the oscillator are investigated, and its Lyapunov exponents (LEs) are discussed. The multistability of the oscillator is discussed by plotting bifurcation diagrams with various initiation methods. The basin of attraction of the oscillator is discussed in two planes. Impulsive control is applied to the oscillator to control its chaotic dynamics. Additionally, the circuit is implemented to reveal its feasibility
An External Parameter Independent Novel Cost Function for Evolving Bijective Substitution‐Boxes
The property of nonlinearity has high importance for the design of strong substitution boxes. Therefore, the development of new techniques to produce substitution boxes with high values of nonlinearity is essential. Many research papers have shown that optimization algorithms are an efficient technique to obtain good solutions. However, there is no reference in the public literature showing that a heuristic method obtains optimal nonlinearity unless seeded with optimal initial solutions. Moreover, the majority of papers with the best nonlinearity reported for pseudo-random seeding of the algorithm(s) often achieve their results with the help of some cost function(s) over the Walsh–Hadamard spectrum of the substitution. In the sense, we proposed to present, in this paper, a novel external parameter independent cost function for evolving bijective s-boxes of high nonlinearity, which is highly correlated to this property. Several heuristic approaches including GaT (genetic and tree), LSA (local search algorithm), and the Hill Climbing algorithm have been investigated to assess the performance of evolved s-boxes. A performance comparison has been done to show the advantages of our new cost function, with respect to cost functions for s-boxes like Clark’s and Picek’s cost functions
Securing Digital Images through Simple Permutation-Substitution Mechanism in Cloud-Based Smart City Environment
Data security plays a significant role in data transfer in cloud-based smart cities. Chaotic maps are commonly used in designing modern cryptographic applications, in which one-dimensional (1D) chaotic systems are widely used due to their simple design and low computational complexity. However, 1D chaotic maps suffer from different kinds of attacks because of their chaotic discontinuous ranges and small key-space. To own the benefits of 1D chaotic maps and avoid their drawbacks, the cascading of two integrated 1D chaotic systems has been utilized. In this paper, we report an image cryptosystem for data transfer in cloud-based smart cities using the cascading of Logistic-Chebyshev and Logistic-Sine maps. Logistic-Sine map has been utilized to permute the plain image, and Logistic-Chebyshev map has been used to substitute the permuted image, while the cascading of both integrated maps has been utilized in performing XOR procedure on the substituted image. The security analyses of the suggested approach prove that the encryption mechanism has good efficiency as well as lower encryption time compared with other related algorithms
Global, regional, and national burden of meningitis and its aetiologies, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background: Although meningitis is largely preventable, it still causes hundreds of thousands of deaths globally each year. WHO set ambitious goals to reduce meningitis cases by 2030, and assessing trends in the global meningitis burden can help track progress and identify gaps in achieving these goals. Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we aimed to assess incident cases and deaths due to acute infectious meningitis by aetiology and age from 1990 to 2019, for 204 countries and territories. Methods: We modelled meningitis mortality using vital registration, verbal autopsy, sample-based vital registration, and mortality surveillance data. Meningitis morbidity was modelled with a Bayesian compartmental model, using data from the published literature identified by a systematic review, as well as surveillance data, inpatient hospital admissions, health insurance claims, and cause-specific meningitis mortality estimates. For aetiology estimation, data from multiple causes of death, vital registration, hospital discharge, microbial laboratory, and literature studies were analysed by use of a network analysis model to estimate the proportion of meningitis deaths and cases attributable to the following aetiologies: Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae, group B Streptococcus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Staphylococcus aureus, viruses, and a residual other pathogen category. Findings: In 2019, there were an estimated 236 000 deaths (95% uncertainty interval [UI] 204 000–277 000) and 2·51 million (2·11–2·99) incident cases due to meningitis globally. The burden was greatest in children younger than 5 years, with 112 000 deaths (87 400–145 000) and 1·28 million incident cases (0·947–1·71) in 2019. Age-standardised mortality rates decreased from 7·5 (6·6–8·4) per 100 000 population in 1990 to 3·3 (2·8–3·9) per 100 000 population in 2019. The highest proportion of total all-age meningitis deaths in 2019 was attributable to S pneumoniae (18·1% [17·1–19·2]), followed by N meningitidis (13·6% [12·7–14·4]) and K pneumoniae (12·2% [10·2–14·3]). Between 1990 and 2019, H influenzae showed the largest reduction in the number of deaths among children younger than 5 years (76·5% [69·5–81·8]), followed by N meningitidis (72·3% [64·4–78·5]) and viruses (58·2% [47·1–67·3]). Interpretation: Substantial progress has been made in reducing meningitis mortality over the past three decades. However, more meningitis-related deaths might be prevented by quickly scaling up immunisation and expanding access to health services. Further reduction in the global meningitis burden should be possible through low-cost multivalent vaccines, increased access to accurate and rapid diagnostic assays, enhanced surveillance, and early treatment. Funding: Bill & Melinda Gates Foundation
Global mortality from dementia: Application of a newmethod and results from the global burden of disease study 2019
INTRODUCTION:
Dementia is currently one of the leading causes of mortality globally, and mortality due to dementia will likely increase in the future along with corresponding increases in population growth and population aging. However, large inconsistencies in coding practices in vital registration systems over time and between countries complicate the estimation of global dementia mortality.
METHODS:
We meta-analyzed the excess risk of death in those with dementia and multiplied these estimates by the proportion of dementia deaths occurring in those with severe, end-stage disease to calculate the total number of deaths that could be attributed to dementia.
RESULTS:
We estimated that there were 1.62 million (95% uncertainty interval [UI]: 0.41–4.21) deaths globally due to dementia in 2019. More dementia deaths occurred in women (1.06 million [0.27–2.71]) than men (0.56 million [0.14–1.51]), largely but not entirely due to the higher life expectancy in women (age-standardized female-to-male ratio 1.19 [1.10–1.26]). Due to population aging, there was a large increase in all-age mortality rates from dementia between 1990 and 2019 (100.1% [89.1–117.5]). In 2019, deaths due to dementia ranked seventh globally in all ages and fourth among individuals 70 and older compared to deaths from other diseases estimated in the Global Burden of Disease (GBD) study.
DISCUSSION:
Mortality due to dementia represents a substantial global burden, and is expected to continue to grow into the future as an older, aging population expands globally
- …