431 research outputs found

    2-dimensional membrane separator modelling: Mass transfer by convection and diffusion

    Get PDF
    AbstractHydrogen selective membranes may present a technologically and economically efficient method for the separation of H2 from CO2 in pre-combustion decarbonisation of power production from fossil fuels. Accurate scale-up and performance prediction of membranes strongly depends on adequate representation of the prevailing resistances to mass transfer, especially for present-day high flux membranes. In a series of experiments, H2/N2 separation is measured as a function of feed flow and retentate pressure for a supported palladium membrane enclosed by annular channels for feed/retentante and sweep/permeate flow. Comparison of model predictions with measured data reveals that mass transfer resistances in the gas phase are significantly reduced by a radial velocity component in cases of high transmembrane flux, which can only be adequately described by a 2D model. For accurate interpretation of experiments, scale-up, and design of modules with high flux membranes, 2D modelling is required

    Improving the efficiency of fibre-chip grating couplers near 1310 nm

    No full text
    We present our recent work on fibre-chip grating couplers operating around 1310 nm. For the first time, we demonstrated the combination of dual-etch and apodization design approaches which can offer state of the art performance. Initial tests from fabricated structures show a -2.2dB loss

    Summary cache: a scalable wide-area Web cache sharing protocol

    Full text link

    Bulk Scale Factor at Very Early Universe

    Full text link
    In this paper we propose a higher dimensional Cosmology based on FRW model and brane-world scenario. We consider the warp factor in the brane-world scenario as a scale factor in 5-dimensional generalized FRW metric, which is called as bulk scale factor, and obtain the evolution of it with space-like and time-like extra dimensions. It is then showed that, additional space-like dimensions can produce exponentially bulk scale factor under repulsive strong gravitational force in the empty universe at a very early stage.Comment: 7 pages, October 201

    Localization of electromagnetic waves in a two dimensional random medium

    Full text link
    Motivated by previous investigations on the radiative effects of the electric dipoles embedded in structured cavities, localization of electromagnetic waves in two dimensions is studied {\it ab initio} for a system consisting of many randomly distributed two dimensional dipoles. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for the total electromagnetic field. The results show that spatially localized electromagnetic waves are possible in such a simple but realistic disordered system. When localization occurs, a coherent behavior appears and is revealed as a unique property differentiating localization from either the residual absorption or the attenuation effects

    Magnetism, Critical Fluctuations and Susceptibility Renormalization in Pd

    Full text link
    Some of the most popular ways to treat quantum critical materials, that is, materials close to a magnetic instability, are based on the Landau functional. The central quantity of such approaches is the average magnitude of spin fluctuations, which is very difficult to measure experimentally or compute directly from the first principles. We calculate the parameters of the Landau functional for Pd and use these to connect the critical fluctuations beyond the local-density approximation and the band structure.Comment: Replaced with the revised version accepted for publication. References updated, errors corrected, other change

    Hot Deck Multiple Imputation for Handling Missing Accelerometer Data

    Get PDF
    Missing data due to non-wear are common in accelerometer studies measuring physical activity and sedentary behavior. Accelerometer outputs are high-dimensional time-series data that are episodic and often highly skewed, presenting unique challenges for handling missing data. Common methods for missing accelerometry either are ad-hoc, require restrictive parametric assumptions, or do not appropriately impute bouts. This study developed a flexible hot-deck multiple imputation (MI; i.e., “replacing” missing data with observed values) procedure to handle missing accelerometry. For each missing segment of accelerometry, “donor pools” contained observed segments from either the same or different participants, and ten imputed segments were randomly drawn from the donor pool according to selection weights, where the donor pool and selection weight depended on variables associated with non-wear and/or accelerometer-based measures. A simulation study of 2550 women compared hot deck MI to two standard methods in the field: available case (AC) analysis (i.e., analyzing all observed accelerometry with no restriction on wear time or number of days) and complete case (CC) analysis (i.e., analyzing only participants that wore the accelerometer for ≥ 10 h for 4–7 days). This was repeated using accelerometry from the entire 24-h day and daytime (10am–8pm) only, and data were missing at random. For the entire 24-h day, MI produced less bias and better 95% confidence interval (CI) coverage than AC and CC. For the daytime only, MI produced less bias and better 95% CI coverage than AC; CC produced similar bias and 95% CI coverage, but longer 95% CIs than MI

    Hawking Radiation of Black Holes in Infrared Modified Ho\v{r}ava-Lifshitz Gravity

    Full text link
    We study the Hawking radiation of the spherically symmetric, asymptotically flat black holes in the infrared modified Horava-Lifshitz gravity by applying the methods of covariant anomaly cancellation and effective action, as well as the approach of Damour-Ruffini-Sannan's. These black holes behave as the usual Schwarzschild ones of the general relativity when the radial distance is very large. We also extend the method of covariant anomaly cancellation to derive the Hawking temperature of the spherically symmetric, asymptotically AdS black holes that represent the analogues of the Schwarzschild AdS ones.Comment: no figures, 16 pages,accepted by EPJ

    DAW: Duplicate-AWare Federated Query Processing over the Web of Data

    Full text link
    Abstract. Over the last years the Web of Data has developed into a large compendium of interlinked data sets from multiple domains. Due to the decentralised architecture of this compendium, several of these datasets contain duplicated data. Yet, so far, only little attention has been paid to the effect of duplicated data on federated querying. This work presents DAW, a novel duplicate-aware approach to feder-ated querying over the Web of Data. DAW is based on a combination of min-wise independent permutations and compact data summaries. It can be directly combined with existing federated query engines in or-der to achieve the same query recall values while querying fewer data sources. We extend three well-known federated query processing engines – DARQ, SPLENDID, and FedX – with DAW and compare our exten-sions with the original approaches. The comparison shows that DAW can greatly reduce the number of queries sent to the endpoints, while keeping high query recall values. Therefore, it can significantly improve the performance of federated query processing engines. Moreover, DAW provides a source selection mechanism that maximises the query recall, when the query processing is limited to a subset of the sources

    Optical Properties of GaAs Quantum Dots Fabricated by Filling of Self-Assembled Nanoholes

    Get PDF
    Experimental results of the local droplet etching technique for the self-assembled formation of nanoholes and quantum rings on semiconductor surfaces are discussed. Dependent on the sample design and the process parameters, filling of nanoholes in AlGaAs generates strain-free GaAs quantum dots with either broadband optical emission or sharp photoluminescence (PL) lines. Broadband emission is found for samples with completely filled flat holes, which have a very broad depth distribution. On the other hand, partly filling of deep holes yield highly uniform quantum dots with very sharp PL lines
    • …
    corecore